algorithm/problem/leetcode/3123
3123. 最短路径中的边
给你一个 n 个节点的无向带权图,节点编号为 0 到 n - 1 。图中总共有 m 条边,用二维数组 edges 表示,其中 edges[i] = [ai, bi, wi] 表示节点 ai 和 bi 之间有一条边权为 wi 的边。
对于节点 0 为出发点,节点 n - 1 为结束点的所有最短路,你需要返回一个长度为 m 的 boolean 数组 answer ,如果 edges[i] 至少 在其中一条最短路上,那么 answer[i] 为 true ,否则 answer[i] 为 false 。
请你返回数组 answer 。
注意,图可能不连通。
示例 1:
**输入:**n = 6, edges = [[0,1,4],[0,2,1],[1,3,2],[1,4,3],[1,5,1],[2,3,1],[3,5,3],[4,5,2]]
输出:[true,true,true,false,true,true,true,false]
解释:
以下为节点 0 出发到达节点 5 的 所有 最短路:
路径 0 -> 1 -> 5 :边权和为 4 + 1 = ...
algorithm/problem/leetcode/2812
2812. 找出最安全路径(2154)
给你一个下标从 0 开始、大小为 n x n 的二维矩阵 grid ,其中 (r, c) 表示:
如果 grid[r][c] = 1 ,则表示一个存在小偷的单元格
如果 grid[r][c] = 0 ,则表示一个空单元格
你最开始位于单元格 (0, 0) 。在一步移动中,你可以移动到矩阵中的任一相邻单元格,包括存在小偷的单元格。
矩阵中路径的 安全系数 定义为:从路径中任一单元格到矩阵中任一小偷所在单元格的 最小 曼哈顿距离。
返回所有通向单元格 (n - 1, n - 1) 的路径中的 最大安全系数 。
单元格 (r, c) 的某个 相邻 单元格,是指在矩阵中存在的 (r, c + 1)、(r, c - 1)、(r + 1, c) 和 (r - 1, c) 之一。
两个单元格 (a, b) 和 (x, y) 之间的 曼哈顿距离 等于 | a - x | + | b - y | ,其中 |val| 表示 val 的绝对值。
示例 1:
123输入:grid = [[1,0,0],[0,0,0],[0,0,1]]输出:0解释:从 (0, 0) ...
algorithm/problem/leetcode/743
743. 网络延迟时间
有 n 个网络节点,标记为 1 到 n。
给你一个列表 times,表示信号经过 有向 边的传递时间。 times[i] = (ui, vi, wi),其中 ui 是源节点,vi 是目标节点, wi 是一个信号从源节点传递到目标节点的时间。
现在,从某个节点 K 发出一个信号。需要多久才能使所有节点都收到信号?如果不能使所有节点收到信号,返回 -1 。
示例 1:
12输入:times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2输出:2
示例 2:
12输入:times = [[1,2,1]], n = 2, k = 1输出:1
示例 3:
12输入:times = [[1,2,1]], n = 2, k = 2输出:-1
提示:
1 <= k <= n <= 100
1 <= times.length <= 6000
times[i].length == 3
1 <= ui, vi <= n
ui != vi
0 <= wi <= 100
所有 (ui, vi) ...
algorithm/problem/leetcode/1631
1631. 最小体力消耗路径(1948)
你准备参加一场远足活动。给你一个二维 rows x columns 的地图 heights ,其中 heights[row][col] 表示格子 (row, col) 的高度。一开始你在最左上角的格子 (0, 0) ,且你希望去最右下角的格子 (rows-1, columns-1) (注意下标从 0 开始编号)。你每次可以往 上,下,左,右 四个方向之一移动,你想要找到耗费 体力 最小的一条路径。
一条路径耗费的 体力值 是路径上相邻格子之间 高度差绝对值 的 最大值 决定的。
请你返回从左上角走到右下角的最小 体力消耗值 。
示例 1:
1234输入:heights = [[1,2,2],[3,8,2],[5,3,5]]输出:2解释:路径 [1,3,5,3,5] 连续格子的差值绝对值最大为 2 。这条路径比路径 [1,2,2,2,5] 更优,因为另一条路径差值最大值为 3 。
示例 2:
123输入:heights = [[1,2,3],[3,8,4],[5,3,5]]输出:1解释:路径 [1,2,3,4,5] 的相邻格子差值绝对值最大为 ...