algorithm-math-combinatorial-count
组合计数
计数基本原理
∣A∣=∑a∈A1|A| = \sum\limits_{a \in A} 1∣A∣=a∈A∑1
加法定理
|A U B| = |A| + |B|
乘法定理
|A * B| = |A| * |B|
举例
n-bit二进制串一共有多少个: 2^n(乘法原理)
如果把0看作(,把1看作),配对的括号序列有多少个?
0011->(())
101010->)()()(
对于长度为6的序列:
序列={()‾(()),k=2()‾()(),k=2(‾())‾(),k=4(‾(()))‾,k=6(‾()())‾,k=6序列 = \begin{cases}
\underline{()}(()), & k = 2 \\
\underline{()}()(), & k = 2 \\
\underline{(}()\underline{)}(), & k = 4 \\
\underline{(}(())\underline{)}, & k = 6 \\
\underline{(}()()\underline{)}, & ...