algorithm-dp-bag
背包
0-1背包
给定一个背包的容量c和n个物品,第i个物品的体积为w[i],价值为v[i]。每个物品选或不选,求体积和不超过capacity时的最大价值和
核心思路:枚举第i个物品选或不选
初始化一个二维数组dp,其中dp[i][j]表示在考虑前i个物品、背包容量为j的情况下的最大总价值
dp[i][c] = max(dp[i-1][c], dp[i-1][c-w[i]] + v[i])
背包至多装capacity
求方案数
求最大价值和(传统01背包)
背包恰好装capacity
求方案数: 494. 目标和
求最大价值和
求最小价值和
背包最少装capacity
求方案数
求最小价值和
其它
3180. 执行操作可获得的最大总奖励 I
完全背包
给定一个背包的容量c和n种物品,第i种物品的体积为w[i],价值为v[i]。每种物品无限次重复选,求体积和不超过capacity时的最大价值和
考虑第i个物品选不选时,可以重复选择,所以这里考虑dp[i][c]时,可能多次更新dp[i][c-w[i]] + v[i]
dp[i][c] = max(dp[i-1] ...