tips-system
Windows
常用命令
123456789# 查看端口占用netstat -ano | findstr 3306# 停止服务(需要管理员权限)net stop mysql80# 列举所有文件dir# 将文件移动到目标位置move file-name dir-name\
参考
文件名包含空格的文件执行方式
文件名包含空格,比如:a df.txt
在命令行中如果直接敲这个文件名,则会被认为是两个文件a和df.txt
所以命令行中需要加上双引号(不能是单引号)
所以用Python的os.system调用系统命令时,需要这样
1os.system('python gene.py --input "{}" --output "{}"'.format(input_dir_path, output_dir_path))
微软输入法
win + ;: 快速emoji
win + v: 历史剪贴板
v:快捷转换:时间、数学计算
u:打出自己不会的字,比如:u huo niao 䲴
以词定字:当想输入某 ...
algorithm-dynamic-programming
dp深似海
“系统过去的历史只能通过现阶段的状态去影响系统的未来”——研究生算法课程老师对动态规划的描述,感觉挺不错的
分类参考了灵神的dp题单
记忆化搜索和递推是dp的两种实现方式
网格图dp
背包dp
线性dp
状态机dp
划分型dp
区间dp
状压dp
数位dp
树形dp
dp回溯
其它待分类dp
注意事项
如果动态转移方程不是按顺序的,那么需要注意不能直接赋值f[i+1][j] = f[i][j];,因为这样可能会覆盖之前动态转移的结果(注释的是按顺序的动态转移写法)
相关题解:3276. 选择矩阵中单元格的最大得分
1234567f[i+1][j] = Math.max(f[i+1][j], f[i][j]);// f[i+1][j] = f[i][j]; // 这里是错的,不能赋值for (int s = map.get(nums.get(i)), t = 0; s > 0; s -= t) { t = s & -s; if ((j & t) > 0) continue; f[i+1][j|t] = ...
algorithm-math-combinatorial-count
组合计数
计数基本原理
∣A∣=∑a∈A1|A| = \sum\limits_{a \in A} 1∣A∣=a∈A∑1
加法定理
|A U B| = |A| + |B|
乘法定理
|A * B| = |A| * |B|
举例
n-bit二进制串一共有多少个: 2^n(乘法原理)
如果把0看作(,把1看作),配对的括号序列有多少个?
0011->(())
101010->)()()(
对于长度为6的序列:
序列={()‾(()),k=2()‾()(),k=2(‾())‾(),k=4(‾(()))‾,k=6(‾()())‾,k=6序列 = \begin{cases}
\underline{()}(()), & k = 2 \\
\underline{()}()(), & k = 2 \\
\underline{(}()\underline{)}(), & k = 4 \\
\underline{(}(())\underline{)}, & k = 6 \\
\underline{(}()()\underline{)}, & ...
algorithm-build-graph
建图是一个机械劳作
邻接矩阵
邻接矩阵是一个二维数组,其行和列都对应图中的顶点。如果顶点i和顶点j之间存在边,则矩阵中的i,j 位置的元素为1(对于无权图),或为边的权重(对于有权图)。如果i=j,则通常为0,表示顶点不会与自己相连
一般来说,题目给出的都是邻接矩阵的形式。
例如743. 网络延迟时间
这个题目就是给你一个列表 times,表示信号经过 有向 边的传递时间。 times[i] = (ui, vi, wi),其中 ui 是源节点,vi 是目标节点, wi 是一个信号从源节点传递到目标节点的时间。
本篇主要讨论如何将邻接矩阵转换成其它的存图方式
邻接表
邻接表是表示图中顶点之间相邻关系的一种方式。对于图中的每一个顶点,邻接表包含了与该顶点直接相连的所有顶点的列表。
12345678public int networkDelayTime(int[][] times, int n, int k) { List<int[]> g[] = new ArrayList[n]; Arrays.setAll(g, i -> new ArrayL ...
algorithm-SPFA
SPFA算法
概念
SPFA算法是一种基于Bellman-Ford算法的改进版本,它用于计算图中各节点到源节点的最短路径。与Bellman-Ford算法不同的是,SPFA算法使用了队列来优化计算,从而在某些情况下加速了计算过程。
SPFA算法的基本思想是从源节点开始,将源节点放入队列中,然后不断从队列中取出节点,考察它的邻接节点,以更新到这些邻接节点的最短距离。如果某个节点的最短距离被更新,且该节点不在队列中,那么将该节点加入队列中,以便后续继续考察。
复杂度是O(V*E)
步骤
初始化:将源节点的最短距离设置为0,其他节点的最短距离设置为无穷大(或一个足够大的值),并将源节点加入队列中。
迭代处理队列中的节点:
从队列中取出一个节点。
考察该节点的所有邻接节点,如果通过当前节点到达邻接节点的路径比已知的最短路径更短,则更新邻接节点的最短路径。
如果邻接节点的最短路径被更新,且邻接节点不在队列中,将它加入队列中。
重复步骤2,直到队列为空。
最短路径计算完成后,可以从源节点到任意目标节点的最短路径已知。
原则
只让当前点能到达的点入队
如果一个点已经在队列里, ...
algorithm-design-data-structure
LRU 缓存
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。
示例:
1234567891011121314151617输入["LRUCache", "put", "put", "get", "put", "get", "put", "get& ...
algorithm-network-flow
网络流
概念
网络流是一种抽象模型,它通常表示为一个有向图,其中节点代表各种资源的位置,边表示资源在节点之间的流动。每条边上都有一个容量,表示资源可以通过该边的最大数量。网络流问题的目标通常是找到从一个节点到另一个节点的流量分布,以最大化或最小化某种性能度量,例如最大流问题和最小割问题。
流(Flow):表示资源在网络中的分配和传输。流量可以通过图中的边流动,但不能超过每条边的容量限制。
容量(Capacity):每条边上的容量表示该边允许的最大流量。流量不得超过容量。
源点和汇点(Source and Sink):源点是网络中资源的起始位置,汇点是资源的目标位置。网络流问题的目标通常是从源点到汇点传输最大量的资源。
最大流问题(Maximum Flow Problem):在给定网络中寻找从源点到汇点的最大流量,同时满足容量限制。
最小割问题(Minimum Cut Problem):在给定网络中找到一组边,通过删除这些边可以分离源点和汇点,同时最小化被切割的容量总和。
Ford-Fulkerson算法
Ford-Fulkerson算法是一种在网络流中寻找最大流的贪心算法。该算法通 ...
tips-docker
Docker
以下docker内容是在windows下的体验
windows的docker有两个模式:HYPE-V和WSL2
其中,我更推荐WSL2模式
可以修改container的配置文件
更方便地共享文件,不需要请求权限
文件位置
12345678910# 程序位置C:\Program Files\Docker# 程序配置文件位置C:\Users\WYH\.docker# HYPE-V模式 镜像位置C:\ProgramData\DockerDesktop# WSL2模式 镜像位置C:\Users\WYH\AppData\Local\Docker\wsl# container 位置\\wsl$\docker-desktop-data\data\docker\containers\
Ubuntu安装docker
Ubuntu安装docker
一些常用指令
1234567891011121314151617181920212223242526272829303132333435363738# 指定镜像新建容器# itd: 交互式、伪终端(TTY)、后台运行docker run -it ...
solution-ubuntu-install-nodejs-and-npm
Ubuntu 安装指定版本的 Node.js 和 npm
12345678apt updateapt upgradeapt install curl# 打开 nvm 官网,找到最新的下载链接curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.5/install.sh | bashsource ~/.bashrc# 安装18.12.1版本的 Node.js,默认搭配8.19.2的npmnvm install 18.12.1
algorithm-floyd
Floyd算法
概念
Floyd算法,也称为Floyd-Warshall算法,是一种用于求解图中所有顶点对之间最短路径的算法。
它是一种动态规划算法,适用于有向图或带权图,可以处理负权边(但不能包含负权回路,负权回路会导致无限小路径)。
伪代码
12345for(k : V) for(i : V) for(j : V) if(d(i, k) + d(k, j) < d(i, j)) d(i, j) = d(i, k) + d(k, j)
算法过程
该算法的本质是动态规划,以状态转移方程的形式描述如下,其中 dp[k][i][j] 表示 经过前 k 个顶点的松弛,得到的顶点 i 到顶点 j 的最短路径长度 。注意第一维的 k 表示 k 个顶点,第二维和第三维表示具体的顶点。
定义: dp[k][i][j] 表示经过前 k 个顶点的松弛,得到的顶点 i 到顶点 j 的最短路径长度。
边界: dp[0][i][j] = i == j ? 0 : (g[i][j] == 0 ? Inf : g[i][j])
递推: dp[k][i][j] = min& ...