algorithm-problem-leetcode-3251
3251. 单调数组对的数目 II(2323)
给你一个长度为 n 的 正 整数数组 nums 。
如果两个 非负 整数数组 (arr1, arr2) 满足以下条件,我们称它们是 单调 数组对:
两个数组的长度都是 n 。
arr1 是单调 非递减 的,换句话说 arr1[0] <= arr1[1] <= ... <= arr1[n - 1] 。
arr2 是单调 非递增 的,换句话说 arr2[0] >= arr2[1] >= ... >= arr2[n - 1] 。
对于所有的 0 <= i <= n - 1 都有 arr1[i] + arr2[i] == nums[i] 。
请你返回所有 单调 数组对的数目。
由于答案可能很大,请你将它对 10^9 + 7 取余 后返回。
示例 1:
**输入:**nums = [2,3,2]
**输出:**4
解释:
单调数组对包括:
([0, 1, 1], [2, 2, 1])
([0, 1, 2], [2, 2, 0])
([0, 2, 2], [2, 1, 0])
([1, 2, 2] ...
algorithm-problem-leetcode-2920
2920. 收集所有金币可获得的最大积分(2351)
节点 0 处现有一棵由 n 个节点组成的无向树,节点编号从 0 到 n - 1 。给你一个长度为 n - 1 的二维 整数 数组 edges ,其中 edges[i] = [ai, bi] 表示在树上的节点 ai 和 bi 之间存在一条边。另给你一个下标从 0 开始、长度为 n 的数组 coins 和一个整数 k ,其中 coins[i] 表示节点 i 处的金币数量。
从根节点开始,你必须收集所有金币。要想收集节点上的金币,必须先收集该节点的祖先节点上的金币。
节点 i 上的金币可以用下述方法之一进行收集:
收集所有金币,得到共计 coins[i] - k 点积分。如果 coins[i] - k 是负数,你将会失去 abs(coins[i] - k) 点积分。
收集所有金币,得到共计 floor(coins[i] / 2) 点积分。如果采用这种方法,节点 i 子树中所有节点 j 的金币数 coins[j] 将会减少至 floor(coins[j] / 2) 。
返回收集 所有 树节点的金币之后可以获得的最大积分。
示例 1:
...
algorithm-problem-leetcode-2581
2581. 统计可能的树根数目(2228)
Alice 有一棵 n 个节点的树,节点编号为 0 到 n - 1 。树用一个长度为 n - 1 的二维整数数组 edges 表示,其中 edges[i] = [ai, bi] ,表示树中节点 ai 和 bi 之间有一条边。
Alice 想要 Bob 找到这棵树的根。她允许 Bob 对这棵树进行若干次 猜测 。每一次猜测,Bob 做如下事情:
选择两个 不相等 的整数 u 和 v ,且树中必须存在边 [u, v] 。
Bob 猜测树中 u 是 v 的 父节点 。
Bob 的猜测用二维整数数组 guesses 表示,其中 guesses[j] = [uj, vj] 表示 Bob 猜 uj 是 vj 的父节点。
Alice 非常懒,她不想逐个回答 Bob 的猜测,只告诉 Bob 这些猜测里面 至少 有 k 个猜测的结果为 true 。
给你二维整数数组 edges ,Bob 的所有猜测和整数 k ,请你返回可能成为树根的 节点数目 。如果没有这样的树,则返回 0。
示例 1:
123456789输入:edges = [[0,1],[1,2] ...
algorithm-problem-leetcode-834
834. 树中距离之和
给定一个无向、连通的树。树中有 n 个标记为 0...n-1 的节点以及 n-1 条边 。
给定整数 n 和数组 edges , edges[i] = [ai, bi]表示树中的节点 ai 和 bi 之间有一条边。
返回长度为 n 的数组 answer ,其中 answer[i] 是树中第 i 个节点与所有其他节点之间的距离之和。
示例 1:
12345输入: n = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]]输出: [8,12,6,10,10,10]解释: 树如图所示。我们可以计算出 dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5) 也就是 1 + 1 + 2 + 2 + 2 = 8。 因此,answer[0] = 8,以此类推。
示例 2:
12输入: n = 1, edges = []输出: [0]
示例 3:
12输入: n = 2, edges = [[1,0]]输出: [1,1]
提示:
1 <= n <= 3 * 10^4 ...
algorithm-problem-leetcode-714
714. 买卖股票的最佳时机含手续费
给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
**注意:**这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
12345678输入:prices = [1, 3, 2, 8, 4, 9], fee = 2输出:8解释:能够达到的最大利润: 在此处买入 prices[0] = 1在此处卖出 prices[3] = 8在此处买入 prices[4] = 4在此处卖出 prices[5] = 9总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
示例 2:
12输入:prices = [1,3,7,5,10,3], fee = 3输出:6
提示:
1 <= prices.length <= 5 * 10^4
1 <= prices[i] < ...
algorithm-problem-leetcode-309
309. 买卖股票的最佳时机含冷冻期
给定一个整数数组prices,其中第 prices[i] 表示第 *i* 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
**注意:**你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
123输入: prices = [1,2,3,0,2]输出: 3 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
示例 2:
12输入: prices = [1]输出: 0
提示:
1 <= prices.length <= 5000
0 <= prices[i] <= 1000
同理,状态机dp,只是在隔一天,所以是dp[j-2]
1234567891011121314class Solution { public int maxProfit(int[] prices) { int n = prices.len ...
algorithm-problem-leetcode-188
188. 买卖股票的最佳时机 IV
给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。
**注意:**你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
123输入:k = 2, prices = [2,4,1]输出:2解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:
1234输入:k = 2, prices = [3,2,6,5,0,3]输出:7解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。 随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
提示:
1 <= k < ...
algorithm-problem-leetcode-123
123. 买卖股票的最佳时机 III
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
**注意:**你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
1234输入:prices = [3,3,5,0,0,3,1,4]输出:6解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。 随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
12345输入:prices = [1,2,3,4,5]输出:4解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。 因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示 ...
algorithm-problem-leetcode-122
122. 买卖股票的最佳时机 II
给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
示例 1:
12345输入:prices = [7,1,5,3,6,4]输出:7解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3。最大总利润为 4 + 3 = 7 。
示例 2:
1234输入:prices = [1,2,3,4,5]输出:4解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。最大总利润为 4 。
示例 3:
123输入:prices = [7,6,4,3,1]输出: ...
algorithm-problem-leetcode-121
121. 买卖股票的最佳时机
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
1234输入:[7,1,5,3,6,4]输出:5解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。 注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
123输入:prices = [7,6,4,3,1]输出:0解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
1 <= prices.length <= 10^5
0 <= prices[i] <= 10^4
12345678910class Solution { public int maxProfi ...