algorithm-problem-nowcoder-64819-A
山峰序列
给定一个数组nums = [i, ..., j],如果这个数组先递增再递减,那么称这个数组为山峰序列
现在给你一个数组,需要重排这个数组,请问有多少种方法可以使重排后的数组为山峰序列
答案可能过大,所以你需要输出答案对于 998244353 的余数
示例 1:
123输入:n = 2, nums = [1,2,3]输出:4解释:[1,2,3],[1,3,2],[2,3,1],[3,2,1]
示例 2:
123输入:n = 3, nums = [3,3,3]输出:1解释:[3,3,3]
示例 3:
123输入:n = 3, nums = [1,2,1]输出:3解释:[1,1,2],[1,2,1],[2,1,1]
提示:
1 <= n <= 10^5
1 <= nums[i] <= 10^9
这个问题相当于去除所有最大数值的元素后,对于剩下的元素组成的数组,查找可以组成的数组的数量,即组合数
例如示例1,去除3后,1和2可以组成4种情况:[],[1],[2],[1,2]
可以发现,如果元素不重复,那么答案很简单,就是2^n
但是如果元素有重复那么直接查 ...
algorithm-problem-leetcode-3276
3276. 选择矩阵中单元格的最大得分
给你一个由正整数构成的二维矩阵 grid。
你需要从矩阵中选择 一个或多个 单元格,选中的单元格应满足以下条件:
所选单元格中的任意两个单元格都不会处于矩阵的 同一行。
所选单元格的值 互不相同。
你的得分为所选单元格值的总和。
返回你能获得的 最大 得分。
示例 1:
输入: grid = [[1,2,3],[4,3,2],[1,1,1]]
输出: 8
解释:
选择上图中用彩色标记的单元格,对应的值分别为 1、3 和 4 。
示例 2:
输入: grid = [[8,7,6],[8,3,2]]
输出: 15
解释:
选择上图中用彩色标记的单元格,对应的值分别为 7 和 8 。
提示:
1 <= grid.length, grid[i].length <= 10
1 <= grid[i][j] <= 100
动态规划:枚举值域,状压行号
12345678910111213141516171819202122232425262728class Solution { public int maxSc ...
algorithm-dp-state-machine
状态机dp
一般定义 f[i][j] 表示在 nums[:i] 在状态 j 下的最优值。一般 j 都很小
代表题目是「买卖股票」系列
121. 买卖股票的最佳时机
122. 买卖股票的最佳时机 II
123. 买卖股票的最佳时机 III
188. 买卖股票的最佳时机 IV
309. 买卖股票的最佳时机含冷冻期
714. 买卖股票的最佳时机含手续费
algorithm-dp-linear
线性dp
经典线性dp
对于字符串s和t,一般定义f[i][j]表示对s[0:i]和t[0:j]的状态
最长公共子序列(LCS)
1143. 最长公共子序列
最长递增子序列(LIS)
300. 最长递增子序列
一维dp
发生在前缀/后缀之间的转移,例如从 f[i−1] 转移到 f[i],或者从 f[j] 转移到 f[i]
一维线性dp
2140. 解决智力问题(1709)
2944. 购买水果需要的最少金币数(1709)
2901. 最长相邻不相等子序列 II(1899): 还要输出具体方案
2896. 执行操作使两个字符串相等(2172): 需要先条件转换
特殊子序列dp
比较特殊的一类题型,递推比记忆化搜索好写
计算合法子序列的最长长度、个数、元素和等。
一般定义 f[x] 表示以元素(数字) x 结尾的合法子序列的 xxx 值(比如个数、元素和),从子序列的倒数第二个数转移过来。
2501. 数组中最长的方波(1480)
3202. 找出有效子序列的最大长度 II(1974)
3351. 好子序列的元素之和:一种比较不错的思路,可以通过这题理解特殊 ...
algorithm-dp-misc
更多
待分类整理
需要小技巧的动态规划
石子游戏 V(2087
几块石子 排成一行 ,每块石子都有一个关联值,关联值为整数,由数组 stoneValue 给出。
游戏中的每一轮:Alice 会将这行石子分成两个 非空行(即,左侧行和右侧行);Bob 负责计算每一行的值,即此行中所有石子的值的总和。Bob 会丢弃值最大的行,Alice 的得分为剩下那行的值(每轮累加)。如果两行的值相等,Bob 让 Alice 决定丢弃哪一行。下一轮从剩下的那一行开始。
只 剩下一块石子 时,游戏结束。Alice 的分数最初为 0 。
返回 Alice 能够获得的最大分数 。
示例 1:
12345输入:stoneValue = [6,2,3,4,5,5]输出:18解释:在第一轮中,Alice 将行划分为 [6,2,3],[4,5,5] 。左行的值是 11 ,右行的值是 14 。Bob 丢弃了右行,Alice 的分数现在是 11 。在第二轮中,Alice 将行分成 [6],[2,3] 。这一次 Bob 扔掉了左行,Alice 的分数变成了 16(11 + 5)。最后一轮 Alice 只能将行分成 [ ...
algorithm-dp-backtracking
动态规划回溯
通过回溯找到动态规划过程中的具体路径
具体来说,就是从最终答案开始,根据动态规划转移方程的条件,一步一步往回找
01背包+回溯: 689. 三个无重叠子数组的最大和
完全背包+回溯: 1449. 数位成本和为目标值的最大数字
一维线性dp+回溯: 2901. 最长相邻不相等子序列 II(1899)
algorithm-dp-tree
树形dp
树形动态规划(Tree DP)就是在树形结构上进行的动态规划。
在树形结构中,每个节点通常连接着若干子节点,但只有一个父节点。树形DP利用了树的这种结构特点,在动态规划的过程中以节点为单位进行递推,从叶子节点开始,向上逐层计算直至根节点。
由于树形结构天然地包含了递归特性,因此递归式的DP是一种常用的方法。
换根dp
也叫二次扫描法
通常是先计算以0节点为root出发的结果,记为res[0],而以其它节点为root出发的结果可以通过与res[0]的差值相加得到
834. 树中距离之和:reroot过程中,通过子树大小计算当前节点为root的结果
2581. 统计可能的树根数目(2228): reroot过程中,通过判断题目条件是否包含pre和cur所连成的边,来计算当前节点作为root的结果
其它树形dp
2920. 收集所有金币可获得的最大积分(2351)
algorithm-dp-digital
数位dp
数位分解:将一个数按照各个数位进行分解,例如将123分解为1、2、3。数位dp主要涉及到对这些数位的状态进行动态规划,通常,状态表示当前处理到的位置、当前已经得到的数值等信息。
可用于解决如数位上包含特定数字、数字之和等问题。
数位dp模板
2376. 统计特殊整数(2120)
123456789101112131415161718192021222324class Solution { public int countSpecialNumbers(int n) { char cs[] = String.valueOf(n).toCharArray(); int memo[][] = new int[cs.length][1 << 10]; for (int i = 0; i < cs.length; i++) Arrays.fill(memo[i], -1); return dfs(0, 0, true, false, cs, memo); } // ...
algorithm-dp-split
划分型dp
对数组或者字符串进行位置划分,划分成几个子数组或者子字符串
判定能否划分
一般定义f[i]表示长为i的前缀a[:i]能否划分,枚举最后一个子数组的左端点L,从f[L]转移到f[i],并考虑a[L:j]是否满足要求
2369. 检查数组是否存在有效划分(1780)
计算划分最优值
定义f[i]表示对于前缀[0:i)所得到的最优解,枚举最后一个子数组的左端点L,从f[L]转移到f[i],并考虑子数组[L:i)对最优解的影响
2707. 字符串中的额外字符(1736)
约束划分个数
定义f[i][j]表示对于前缀[0:i)划分成j个连续子数组所得到的最优解,枚举最后一个子数组的左端点L,从f[L][j-1]转移到f[i][j],并考虑子数组[L:i)对最优解的影响
2911. 得到 K 个半回文串的最少修改次数(2608)
不相交区间
2008. 出租车的最大盈利(1872)
algorithm-dp-data-structure-optimization
数据结构优化dp
前缀和优化dp
3381. 长度可被 K 整除的子数组的最大元素和: 前缀和优化dp
3251. 单调数组对的数目 II(2323): 前缀和优化dp
其它优化dp
3181. 执行操作可获得的最大总奖励 II