没有特殊说明,题目均来自牛客面试必刷101

链表

反转链表

1
2
3
4
5
6
7
8
9
10
public ListNode ReverseList (ListNode head) {
ListNode cur = head, pre = null;
while (cur != null) {
ListNode nxt = cur.next;
cur.next = pre;
pre = cur;
cur = nxt;
}
return pre;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Node {
int val;
Node nxt;
public Node(int val) {
this.val = val;
}
}
public class Solution {
public static void main(String[] args) {
Node dummy = new Node(-1), pre = dummy;
for (int i = 0; i < 10; i++) {
Node cur = new Node(i);
pre.nxt = cur;
pre = cur;
}
pre = null;
Node cur = dummy.nxt;
while (cur != null) {
Node nxt = cur.nxt;
cur.nxt = pre;
pre = cur;
cur = nxt;
}
while (pre != null) {
System.out.println(pre.val);
pre = pre.nxt;
}
}
}

链表内指定区间反转

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public ListNode reverseBetween (ListNode head, int m, int n) {  // 思路和普通反转链表一样,但需要调整区间的头尾节点
ListNode dummy = new ListNode(-1);
dummy.next = head;
ListNode cur = dummy, pre = null;
int cnt = 0;
while (cnt < m) { // 找到第m-1个节点,记为ahead
pre = cur;
cur = cur.next;
cnt++;
}
ListNode ahead = pre;
while (cnt <= n && cur != null) { // 反转m到n区间节点
ListNode nxt = cur.next;
cur.next = pre;
pre = cur;
cur = nxt;
cnt++;
}
ahead.next.next = cur; // 调整原本第m个节点的next指针
ahead.next = pre; // 调整ahead节点的next指针
return dummy.next;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public ListNode reverseBetween (ListNode head, int m, int n) {  // 修改反转思路
ListNode dummy = new ListNode(-1);
dummy.next = head;
ListNode cur = dummy, pre = null;
int cnt = 0;
while (cnt < m) {
pre = cur;
cur = cur.next;
cnt++;
}
// [1,2,3,4,5], m=2, n=4 -> [1,3,2,4,5], [1,4,3,2,5]
while (cnt < n && cur.next != null) { // 直接把nxt节点插入到pre节点的next位置
ListNode nxt = cur.next;
cur.next = nxt.next;
nxt.next = pre.next;
pre.next = nxt;
cnt++;
}
return dummy.next;
}

合并两个排序的链表

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public ListNode Merge (ListNode pHead1, ListNode pHead2) {  // 合并两个已排序的链表
ListNode dummy = new ListNode(0), cur = dummy;;
while (pHead1 != null && pHead2 != null) {
if (pHead1.val < pHead2.val) {
cur.next = pHead1;
pHead1 = pHead1.next;
}
else {
cur.next = pHead2;
pHead2 = pHead2.next;
}
cur = cur.next;
}
cur.next = pHead1 != null ? pHead1 : pHead2;
return dummy.next;
}

合并k个已排序的链表

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public ListNode mergeKLists (ArrayList<ListNode> lists) {
// write code here
PriorityQueue<ListNode> pq = new PriorityQueue<>((a, b) -> a.val - b.val);
ListNode dummy = new ListNode(0), cur = dummy;
for (ListNode list : lists) {
if (list != null) pq.offer(list);
}
while (!pq.isEmpty()) {
ListNode p = pq.poll();
cur.next = p;
p = p.next;
if (p != null) pq.offer(p);
cur = cur.next;
}
return dummy.next;
}

判断链表是否有环

链表中环的入口结点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public ListNode EntryNodeOfLoop(ListNode pHead) {  // 快慢指针
ListNode slow = pHead, fast = pHead; // slow和fast初始位置必须相同,否则fast初始化pHead.next则可能死循环
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
if (slow == fast) break;
}
if (fast == null || fast.next == null) return null;
ListNode head = pHead;
while (head != slow) {
head = head.next;
slow = slow.next;
}
return head;
}

链表中倒数最后k个结点

1
2
3
4
5
6
7
8
9
10
11
12
public ListNode FindKthToTail (ListNode pHead, int k) {  // 快慢指针,快指针先走k步
ListNode slow = pHead, fast = pHead;
while (k-- > 0) {
if (fast == null) return null;
fast = fast.next;
}
while (fast != null) {
slow = slow.next;
fast = fast.next;
}
return slow;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
public ListNode FindKthToTail (ListNode pHead, int k) {  // 先找到总长度,再遍历
ListNode cur = pHead;
int cnt = 0;
while (cur != null) {
cur = cur.next;
cnt++;
}
if (cnt < k) return null;
cur = pHead;
for (int i = 0; i < cnt-k; i++) {
cur = cur.next;
}
return cur;
}

两个链表的第一个公共结点

1
2
3
4
5
6
7
8
public ListNode FindFirstCommonNode(ListNode pHead1, ListNode pHead2) {
ListNode cur1 = pHead1, cur2 = pHead2;
while (cur1 != cur2) {
cur1 = cur1 == null ? pHead2 : cur1.next;
cur2 = cur2 == null ? pHead1 : cur2.next;
}
return cur1;
}

链表相加(二):两个链表组成的数字相加,形成一个新链表

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public ListNode addInList (ListNode head1, ListNode head2) {
ListNode cur1 = reverse(head1), cur2 = reverse(head2);
ListNode dummy = new ListNode(-1), pre = dummy;
int add = 0;
while (cur1 != null || cur2 != null || add != 0) {
int add1 = cur1 == null ? 0 : cur1.val;
int add2 = cur2 == null ? 0 : cur2.val;
int val = add1 + add2 + add;
if (val >= 10) {
val -= 10;
add = 1;
}
else add = 0;
ListNode cur = new ListNode(val);
pre.next = cur;
pre = cur;
if (cur1 != null) cur1 = cur1.next;
if (cur2 != null) cur2 = cur2.next;
}
ListNode res = dummy.next;
dummy = null;
return reverse(res);
}
private ListNode reverse(ListNode head) {
ListNode pre = null, cur = head;
while (cur != null) {
ListNode nxt = cur.next;
cur.next = pre;
pre = cur;
cur = nxt;
}
return pre;
}

单链表的排序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public ListNode sortInList (ListNode head) {  // 排序节点值后赋值
List<Integer> list = new ArrayList<>();
ListNode cur = head;
while (cur != null) {
list.add(cur.val);
cur = cur.next;
}
list.sort((a, b) -> a-b);
cur = head;
for (int i = 0; i < list.size(); i++) {
cur.val = list.get(i);
cur = cur.next;
}
return head;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
public ListNode sortInList (ListNode head) {  // 排序节点
List<ListNode> list = new ArrayList<>();
ListNode cur = head;
while (cur != null) {
list.add(cur);
cur = cur.next;
}
list.sort((a, b) -> a.val-b.val);
for (int i = 0; i < list.size(); i++) {
cur = list.get(i);
cur.next = i+1 < list.size() ? list.get(i+1) : null;
}
return list.get(0);
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public ListNode sortInList (ListNode head) {  // 归并排序
if (head == null || head.next == null) return head;
ListNode slow = head, fast = head.next; // slow和fast初始位置可以不同,来调整奇偶情况的中间节点位置
while (fast != null && fast.next != null) { // 快慢指针找到中间节点
slow = slow.next;
fast = fast.next.next;
}
ListNode mid = slow.next; // 奇数情况,左边链表长度 比 右边链表长度 +1
slow.next = null;
return Merge(sortInList(head), sortInList(mid));
}
public ListNode Merge (ListNode pHead1, ListNode pHead2) { // 合并两个已排序的链表
ListNode dummy = new ListNode(0), cur = dummy;;
while (pHead1 != null && pHead2 != null) {
if (pHead1.val < pHead2.val) {
cur.next = pHead1;
pHead1 = pHead1.next;
}
else {
cur.next = pHead2;
pHead2 = pHead2.next;
}
cur = cur.next;
}
cur.next = pHead1 != null ? pHead1 : pHead2;
return dummy.next;
}

判断一个链表是否为回文结构

1
2
3
4
5
6
7
8
9
10
11
12
13
public boolean isPail (ListNode head) {  // O(n)空间 用一个List保存所有元素
ListNode cur = head;
List<Integer> list = new ArrayList<>();
while (cur != null) {
list.add(cur.val);
cur = cur.next;
}
int sz = list.size();
for (int i = 0; i < sz/2; i++) {
if ((int)list.get(i) != (int)list.get(sz-1-i)) return false;
}
return true;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public boolean isPail (ListNode head) {  // O(1)空间,获取中间节点,反转右边链表
ListNode slow = head, fast = head.next; // 获取偏左的中间节点
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
}
ListNode tail = ReverseList(slow.next); // 反转中间节点右边的链表
ListNode left = head, right = tail;
while (right != null) {
if (left.val != right.val) return false;
left = left.next;
right = right.next;
}
return true;
}
public ListNode ReverseList (ListNode head) {
ListNode cur = head, pre = null;
while (cur != null) {
ListNode nxt = cur.next;
cur.next = pre;
pre = cur;
cur = nxt;
}
return pre;
}

链表的奇偶重排

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public ListNode oddEvenList (ListNode head) {  // O(n)空间复杂度
List<ListNode> list1 = new ArrayList<>(); // 奇数位节点
List<ListNode> list2 = new ArrayList<>(); // 偶数位节点
ListNode cur = head;
int cnt = 0;
while (cur != null) {
if (cnt++ % 2 == 0) list1.add(cur);
else list2.add(cur);
cur = cur.next;
}
ListNode dummy = new ListNode(-1), pre = dummy;
for (ListNode node : list1) {
pre.next = node;
pre = node;
}
for (ListNode node : list2) {
pre.next = node;
pre = node;
}
if (list2.size() > 0) list2.get(list2.size()-1).next = null;
return dummy.next;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
public ListNode oddEvenList (ListNode head) {  // O(1)空间复杂度
if (head == null) return head;
ListNode second = head.next; // 偶数节点链表的头节点
ListNode cur1 = head, cur2 = head.next; // 分别遍历奇偶链表
while (cur2 != null && cur2.next != null) {
cur1.next = cur2.next; // 修改奇数链表的指针
cur2.next = cur2.next.next; // 修改偶数链表的指针
cur1 = cur1.next;
cur2 = cur2.next;
}
cur1.next = second; // 最后,奇数链表的尾节点连接到偶数节点链表的头节点
return head;
}

删除有序链表中重复的元素-1:删除值重复的节点,剩下一个

1
2
3
4
5
6
7
8
9
10
public ListNode deleteDuplicates (ListNode head) {
ListNode cur = head;
while (cur != null) {
ListNode nxt = cur.next; // 找到下一个值不一样的节点
while (nxt != null && nxt.val == cur.val) nxt = nxt.next;
cur.next = nxt;
cur = nxt;
}
return head;
}

删除有序链表中重复的元素-2:删除值重复的所有节点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public ListNode deleteDuplicates (ListNode head) {
ListNode dummy = new ListNode(-1);
dummy.next = head;
ListNode cur = head, pre = dummy;
while (cur != null) {
ListNode nxt = cur.next; // 找到下一个值不一样的节点
while (nxt != null && nxt.val == cur.val) nxt = nxt.next;
if (cur.next == nxt) { // 如果就是当前节点的下一节点,则不用删除
pre = cur;
cur = nxt;
} else { // 否则删除中间重复值的节点
pre.next = nxt;
cur = nxt;
}
}
return dummy.next;
}

二分查找/排序

二分查找

1
2
3
4
5
6
7
8
9
10
public int search (int[] nums, int target) {
int n = nums.length, l = 0, r = n-1;
if (n == 0) return -1;
while (l < r) {
int mid = l + (r-l)/2;
if (nums[mid] >= target) r = mid;
else l = mid+1;
}
return nums[l] == target ? l : -1;
}

寻找峰值

1
2
3
4
5
6
7
8
9
10
11
12
13
public int findPeakElement (int[] nums) {
int n = nums.length;
int t[] = new int[n+2];
System.arraycopy(nums, 0, t, 1, n);
int l = 1, r = n;
while (l < r) {
int mid = l + (r-l)/2;
if (t[mid] < t[mid+1]) l = mid+1; // 右边一定有峰
else if (t[mid] < t[mid-1]) r = mid; // 左边一定有峰
else return mid-1; // 当前就是峰
}
return l-1;
}

数组中的逆序对(归并排序计数)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
int res = 0, MOD = (int)1e9+7;
public int InversePairs (int[] nums) {
int n = nums.length;
mergeSort(nums, 0, n-1);
return res;
}
private void mergeSort(int[] nums, int l, int r) {
int mid = l + (r-l)/2;
if (l < mid) mergeSort(nums, l, mid);
if (mid+1 < r) mergeSort(nums, mid+1, r);
merge(nums, l, mid, r);
}
private void merge(int[] nums, int l, int mid, int r) {
int i = l, j = mid+1, idx = 0;
int[] t = new int[r-l+1];
while (i <= mid && j <= r) {
if (nums[j] <= nums[i]) {
res = (res + mid - i + 1) % MOD;
t[idx++] = nums[j++];
}
else {
t[idx++] = nums[i++];
}
}
while (i <= mid) t[idx++] = nums[i++];
while (j <= r) t[idx++] = nums[j++];
for (int k = 0; k < t.length; k++) {
nums[k+l] = t[k];
}
}

旋转数组的最小数字

1
2
3
4
5
6
7
8
9
10
public int minNumberInRotateArray (int[] nums) {
int n = nums.length, l = 0, r = n-1;
while (l < r) {
int mid = l + (r-l)/2;
if (nums[mid] > nums[r]) l = mid+1;
else if (nums[mid] < nums[r])r = mid;
else r--; // 相等情况无法二分,需要一个一个减右边界
}
return nums[l];
}

比较版本号

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public int compare (String version1, String version2) {
String words1[] = version1.split("\\."), words2[] = version2.split("\\.");
int n1 = words1.length, n2 = words2.length;
int idx = 0;
while (idx < n1 || idx < n2) {
int v1 = idx < n1 ? Integer.valueOf(words1[idx]) : 0;
int v2 = idx < n2 ? Integer.valueOf(words2[idx]) : 0;
if (v1 > v2) {
return 1;
}
else if (v1 < v2) {
return -1;
}
idx++;
}
return 0;
}

二叉树

先序遍历、中序遍历、后序遍历

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
private void preOrder(TreeNode cur, List<Integer> list) {  // 递归通用写法
if (cur == null) return;
list.add(cur.val); // 前序
preOrder(cur.left, list);
// list.add(cur.val); // 中序
preOrder(cur.right, list);
// list.add(cur.val); // 后序
}
public int[] preorderTraversal (TreeNode root) { // 非递归,前序遍历简单写法
if (root == null) return new int[]{};
List<Integer> list = new ArrayList<>();
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
TreeNode p = stack.pop();
list.add(p.val);
System.out.print(p.val + " ");
// 先压右,再压左,保证左先弹出
if (p.right != null) stack.push(p.right);
if (p.left != null) stack.push(p.left);
}
return list.stream().mapToInt(i->i).toArray();
}
public int[] postorderTraversal (TreeNode root) { // 非递归,后序遍历简单写法,双栈
if (root == null) return new int[]{};
List<Integer> list = new ArrayList<>();
Stack<TreeNode> stack = new Stack<>();
Stack<TreeNode> reverseStack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
TreeNode p = stack.pop();
reverseStack.push(p);
// 先压左,再压右,保证右先弹出到reverseStack
if (p.left != null) stack.push(p.left);
if (p.right != null) stack.push(p.right);
}
while (!reverseStack.isEmpty()) list.add(reverseStack.pop().val);
return list.stream().mapToInt(i->i).toArray();
}
public int[] preorderTraversal (TreeNode root) { // 非递归,前序中序通用解法
List<Integer> list = new ArrayList<>();
Deque<TreeNode> stack = new LinkedList<>();
TreeNode cur = root;
while (cur != null || !stack.isEmpty()) {
while (cur != null) {
list.add(cur.val); // 前序遍历
stack.push(cur);
cur = cur.left;
}
TreeNode p = stack.pop();
// list.add(p.val); // 中序遍历
cur = p.right;
}
return list.stream().mapToInt(i -> i).toArray();
}
public int[] postorderTraversal (TreeNode root) { // 非递归,后序遍历单栈写法
if (root == null) return new int[]{};
List<Integer> list = new ArrayList<>();
Stack<TreeNode> stack = new Stack<>();
TreeNode cur = root, pre = null;
while (cur != null || !stack.isEmpty()) {
while (cur != null) { // 优先找左边节点
stack.push(cur);
cur = cur.left;
}
TreeNode p = stack.pop();
if (p.right == null || pre == p.right) { // 右边没有元素或者已访问
list.add(p.val);
pre = p;
} else { // 当前节点入栈并访问右边
stack.push(p);
cur = p.right;
}
}
return list.stream().mapToInt(i->i).toArray();
}

二叉树的最大深度

1
2
3
4
public int maxDepth (TreeNode root) {
if (root == null) return 0;
return Math.max(maxDepth(root.left)+1, maxDepth(root.right)+1);
}

二叉搜索树与双向链表(转换成双向链表)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public TreeNode Convert(TreeNode pRootOfTree) {
return inOrder(pRootOfTree)[0];
}
private TreeNode[] inOrder(TreeNode cur) {
if (cur == null) return new TreeNode[]{null, null};
TreeNode left[] = inOrder(cur.left);
TreeNode right[] = inOrder(cur.right);
TreeNode pre = left[1], nxt = right[0];
if (pre != null) pre.right = cur;
cur.left = pre;
if (nxt != null) nxt.left = cur;
cur.right = nxt;
TreeNode l = left[0] == null ? cur : left[0], r = right[1] == null ? cur : right[1];
return new TreeNode[]{l, r};
}

合并二叉树

1
2
3
4
5
6
7
8
public TreeNode mergeTrees (TreeNode t1, TreeNode t2) {
if (t1 == null) return t2;
if (t2 == null) return t1;
t1.val += t2.val;
t1.left = mergeTrees(t1.left, t2.left);
t1.right = mergeTrees(t1.right, t2.right);
return t1;
}

二叉树的镜像

1
2
3
4
5
6
7
public TreeNode Mirror (TreeNode pRoot) {
if (pRoot == null) return null;
TreeNode left = pRoot.left; // 需要提前定义,因为被下一句替换了
pRoot.left = Mirror(pRoot.right);
pRoot.right = Mirror(left);
return pRoot;
}

判断是不是二叉搜索树

1
2
3
4
5
6
7
8
9
10
11
12
13
public boolean isValidBST (TreeNode root) {  // 丑陋dfs,外置一个变量保存结果,dfs结果返回子树范围
dfs(root);
return flag;
}
boolean flag = true;
public int[] dfs(TreeNode cur) {
if (cur == null) return null;
int[] left = dfs(cur.left), right = dfs(cur.right);
if (left != null && cur.val <= left[1]) flag = false;
if (right != null && cur.val >= right[0]) flag = false;
int min = left == null ? cur.val : left[0], max = right == null ? cur.val : right[1];
return new int[]{min, max};
}
1
2
3
4
5
6
7
8
public boolean isValidBST (TreeNode root) {  // 优雅dfs,参数中放置范围
return dfs(root, Integer.MIN_VALUE, Integer.MAX_VALUE);
}
public boolean dfs(TreeNode cur, int l, int r) {
if (cur == null) return true;
if (cur.val <= l || cur.val >= r) return false;
return dfs(cur.left, l, cur.val) && dfs(cur.right, cur.val, r);
}
1
2
3
4
5
6
7
8
9
10
11
public boolean isValidBST (TreeNode root) {  // 中序遍历dfs中添加判断
return dfs(root);
}
int min = Integer.MIN_VALUE;
public boolean dfs(TreeNode cur) {
if (cur == null) return true;
if (!dfs(cur.left)) return false;
if (cur.val <= min) return false;
min = cur.val;
return dfs(cur.right);
}

判断是不是完全二叉树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public boolean isCompleteTree (TreeNode root) {  // bfs,通过判断当前节点是否可以有子节点
Deque<TreeNode> dq = new LinkedList<>();
dq.offer(root);
boolean children = true;
while (!dq.isEmpty()) {
TreeNode p = dq.poll();
if (p == null) continue;
if (p.left == null && p.right != null) return false;
if (!children && (p.left != null || p.right != null)) return false;
if (p.right == null) children = false;
dq.offer(p.left);
dq.offer(p.right);
}
return true;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public boolean isCompleteTree (TreeNode root) {  // bfs,通过判断当前节点是否还可以出现
Deque<TreeNode> dq = new LinkedList<>();
dq.offer(root);
boolean getNull = false;
while (!dq.isEmpty()) {
TreeNode p = dq.poll();
if (p == null) {
getNull = true;
continue;
}
if (getNull) return false;
dq.offer(p.left);
dq.offer(p.right);
}
return true;
}

判断是不是平衡二叉树

1
2
3
4
5
6
7
8
9
10
11
public boolean IsBalanced_Solution (TreeNode pRoot) {
dfs(pRoot);
return res;
}
boolean res = true;
public int dfs(TreeNode cur) { // dfs找到当前子树的高度,同时判断左右子树高度差是否满足
if (cur == null) return 0;
int left = dfs(cur.left) + 1, right = dfs(cur.right) + 1;
if (Math.abs(left - right) > 1) res = false;
return Math.max(left, right);
}

二叉搜索树的最近公共祖先

1
2
3
4
5
public int lowestCommonAncestor (TreeNode root, int p, int q) {  // dfs查找
if (p < root.val && q < root.val) return lowestCommonAncestor(root.left, p, q);
else if (p > root.val && q > root.val) return lowestCommonAncestor(root.right, p, q);
else return root.val;
}
1
2
3
4
5
6
7
8
public int lowestCommonAncestor (TreeNode root, int p, int q) {  // 按照大小直接向下查找
while (root != null) {
if (p < root.val && q < root.val) root = root.left;
else if (p > root.val && q > root.val) root = root.right;
else return root.val;
}
return -1;
}
1
2
3
4
5
6
7
8
9
10
11
public int lowestCommonAncestor (TreeNode root, int p, int q) {  // bfs逐一判断
Deque<TreeNode> dq = new ArrayDeque<>();
dq.offer(root);
while (!dq.isEmpty()) {
TreeNode cur = dq.poll();
if (Math.min(p, q) <= cur.val && cur.val <= Math.max(p, q)) return cur.val;
if (cur.left != null) dq.offer(cur.left);
if (cur.right != null) dq.offer(cur.right);
}
return -1;
}

在二叉树中找到两个节点的最近公共祖先

1
2
3
4
5
6
7
8
public int lowestCommonAncestor (TreeNode root, int o1, int o2) {
if (root == null) return -1;
if (root.val == o1 || root.val == o2) return root.val; // 当前节点满足
int left = lowestCommonAncestor(root.left, o1, o2);
int right = lowestCommonAncestor(root.right, o1, o2);
if (left != -1 && right != -1) return root.val; // 左右子树分别包含o1和o2,返回当前节点值
return left == -1 ? right : left; // 只有其中一个子树包含
}

序列化二叉树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
String Serialize(TreeNode root) {  // 通过前序遍历和中序遍历构建字符串
return preOrder(root) + "|" + inOrder(root);
}
String preOrder(TreeNode cur) {
if (cur == null) return ""; // 不记录空的子节点
String res = "";
res += cur.val + "."; // 最后会多一个"."
res += preOrder(cur.left);
res += preOrder(cur.right);
return res;
}
String inOrder(TreeNode cur) {
if (cur == null) return "";
String res = "";
res += inOrder(cur.left);
res += cur.val + ".";
res += inOrder(cur.right);
return res;
}
TreeNode Deserialize(String str) { // 通过字符串解析出前序遍历和中序遍历数组,并通过这两个数组构建二叉树
String[] words = str.split("\\|");
if (words.length < 2) return null;
String[] preWords = words[0].split("\\."), inWords = words[1].split("\\.");
int n = preWords.length;
int[] pre = new int[n], in = new int[n];
for (int i = 0; i < n; i++) {
pre[i] = Integer.valueOf(preWords[i]);
in[i] = Integer.valueOf(inWords[i]);
}
return reConstructBinaryTree(pre, in);
}
public TreeNode reConstructBinaryTree (int[] preOrder, int[] vinOrder) { // 递归解决
return dfs(preOrder, vinOrder, 0, preOrder.length-1, 0, vinOrder.length-1);
}
// preLeft和preRight代表preOrder窗口的左右指针,inLeft和inRight同理代表inOrder
public TreeNode dfs(int[] preOrder, int[] inOrder, int preLeft, int preRight, int inLeft, int inRight) {
if (preLeft > preRight) return null;
for (int i = inLeft; i <= inRight; i++) {
// preOrder当前窗口的第一个位置就是当前节点值,即preLeft位置
if (inOrder[i] == preOrder[preLeft]) { // 找到inOrder窗口中对应的节点位置i
TreeNode cur = new TreeNode(preOrder[preLeft]);
int leftWindowLen = i-1-inLeft+1;
// 位置i将inOrder窗口分为两半,preOrder按照对应长度也分为两半,分别递归得到下一个左右节点
cur.left = dfs(preOrder, inOrder, preLeft+1, preLeft+leftWindowLen, inLeft, i-1);
cur.right = dfs(preOrder, inOrder, preLeft+leftWindowLen+1, preRight, i+1, inRight);
return cur;
}
}
return null;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class Solution {
String Serialize(TreeNode root) { // 只通过前序遍历构建字符串,但前序遍历需要记录空的子节点
return preOrder(root);
}
String preOrder(TreeNode cur) { // 记录空的子节点为'#',同时也不会多一个'.'
if (cur == null) return "#";
return cur.val + "." + preOrder(cur.left) + "." + preOrder(cur.right);
}
int idx = -1;
TreeNode Deserialize(String str) { // 通过字符串解析出前序遍历和中序遍历数组,并通过这两个数组构建二叉树
String[] words = str.split("\\."); // 这里每次都split可能很慢,可以用words作为传参解决
if (words[++idx].equals("#")) {
return null;
}
TreeNode cur = new TreeNode(Integer.valueOf(words[idx])); // 同样按照先序遍历的顺序,反序列化
cur.left = Deserialize(str);
cur.right = Deserialize(str);
return cur;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
String Serialize(TreeNode root) {  // 通过层次遍历,也需要记录空的子节点,记录为-1
String res = "";
Deque<TreeNode> dq = new LinkedList<>();
dq.offer(root);
while (!dq.isEmpty()) {
TreeNode p = dq.poll();
res += (p == null ? "-1" : p.val) + ".";
if (p != null) {
dq.offer(p.left);
dq.offer(p.right);
}
}
return res;
}
TreeNode Deserialize(String str) { // 通过层次遍历字符串得到数组,并同样用dq顺序访问
String[] words = str.split("\\.");
int n = words.length;
if (n == 0 || words[0].equals("-1")) return null;
TreeNode root = new TreeNode(Integer.valueOf(words[0]));
Deque<TreeNode> dq = new LinkedList<>();
dq.offer(root);
for (int i = 1; i < n; i += 2) {
int leftVal = Integer.valueOf(words[i]), rightVal = Integer.valueOf(words[i+1]);
TreeNode cur = dq.poll();
if (leftVal != -1) {
cur.left = new TreeNode(leftVal);
dq.offer(cur.left);
}
if (rightVal != -1) {
cur.right = new TreeNode(rightVal);
dq.offer(cur.right);
}
}
return root;
}

重建二叉树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public TreeNode reConstructBinaryTree (int[] preOrder, int[] vinOrder) {  // 递归解决
return dfs(preOrder, vinOrder, 0, preOrder.length-1, 0, vinOrder.length-1);
}
// preLeft和preRight代表preOrder窗口的左右指针,inLeft和inRight同理代表inOrder
public TreeNode dfs(int[] preOrder, int[] inOrder, int preLeft, int preRight, int inLeft, int inRight) { // 这里构造树遍历中序数组,可读性没有遍历先序数组好,可以看下输出二叉树的右视图这题
if (preLeft > preRight) return null;
for (int i = inLeft; i <= inRight; i++) {
// preOrder当前窗口的第一个位置就是当前节点值,即preLeft位置
if (inOrder[i] == preOrder[preLeft]) { // 找到inOrder窗口中对应的节点位置i
TreeNode cur = new TreeNode(preOrder[preLeft]);
int leftWindowLen = i-1-inLeft+1;
// 位置i将inOrder窗口分为两半,preOrder按照对应长度也分为两半,分别递归得到下一个左右节点
cur.left = dfs(preOrder, inOrder, preLeft+1, preLeft+leftWindowLen, inLeft, i-1);
cur.right = dfs(preOrder, inOrder, preLeft+leftWindowLen+1, preRight, i+1, inRight);
return cur;
}
}
return null;
}

输出二叉树的右视图

请根据二叉树的前序遍历,中序遍历恢复二叉树,并打印出二叉树的右视图(每一层的最右节点)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public int[] solve (int[] preOrder, int[] inOrder) {
int n = preOrder.length;
TreeNode root = dfs(preOrder, inOrder, 0, n-1, 0, n-1);
Deque<TreeNode> dq = new LinkedList<>();
dq.offer(root);
List<Integer> res = new ArrayList<>();
while (!dq.isEmpty()) { // 层序遍历得到每一层
res.add(dq.peekLast().val); // 每一层最后一个元素添加到res
for (int i = dq.size(); i > 0; i--) {
TreeNode p = dq.poll();
if (p.left != null) dq.offer(p.left);
if (p.right != null) dq.offer(p.right);
}
}
return res.stream().mapToInt(i->i).toArray();
}
public TreeNode dfs(int[] preOrder, int[] inOrder, int l1, int r1, int l2, int r2) { // 构造树
if (l1 > r1 || l2 > r2) return null;
TreeNode cur = new TreeNode(preOrder[l1]);
for (int i = l1; i <= r1; i++) { // 遍历先序数组
if (preOrder[l1] == inOrder[l2+i-l1]) { // 将中序数组分割成两半,左半是左子树,右半是右子树
cur.left = dfs(preOrder, inOrder, l1+1, i, l2, l2+i-l1-1);
cur.right = dfs(preOrder, inOrder, i+1, r1, l2+i-l1+1, r2);
}
}
return cur;
}

栈/队列

用两个栈实现队列

1
2
3
4
5
6
7
8
9
10
11
12
13
Stack<Integer> stack1 = new Stack<Integer>();
Stack<Integer> stack2 = new Stack<Integer>();
public void push(int node) {
stack1.push(node);
}
public int pop() {
if (stack2.isEmpty()) {
while (!stack1.isEmpty()) {
stack2.push(stack1.pop());
}
}
return stack2.pop();
}

包含min函数的栈

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class Solution {
Stack<Integer> stack1 = new Stack<Integer>();
Stack<Integer> stack2 = new Stack<Integer>();
public void push(int node) {
stack1.push(node);
if (stack2.isEmpty() || node <= stack2.peek()) stack2.push(node); // 小于等于才加入
// stack2.push(Math.min(node, stack2.isEmpty() ? (int)1e9 : stack2.peek())); // 解法2,每次压入栈的最小值
}
public void pop() {
int p = stack1.pop();
if (p == stack2.peek()) stack2.pop(); // 等于才弹出
// stack2.pop(); // 解法2
}
public int top() {
return stack1.peek();
}
public int min() {
return stack2.peek();
}
}

有效括号序列(括号匹配)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public boolean isValid (String s) {
// write code here
char cs[] = s.toCharArray();
Map<Character, Character> MAP = new HashMap<>();
MAP.put(')', '('); MAP.put('}', '{'); MAP.put(']', '[');
Deque<Character> stack = new LinkedList<>();
for (char c : cs) {
Character match = MAP.get(c);
if (match == null) {
stack.push(c);
}
else {
if (!stack.isEmpty() && stack.peek().equals(match)) {
stack.pop();
}
else {
return false;
}
}
}
return stack.isEmpty();
}

用两个栈实现队列

滑动窗口的最大值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public ArrayList<Integer> maxInWindows (int[] num, int size) {
int n = num.length;
ArrayList<Integer> res = new ArrayList<>();
if (size == 0) return res;
Deque<Integer> dq = new ArrayDeque<>();
for (int i = 0; i < n; i++) {
if (!dq.isEmpty() && dq.peekLast() <= i - size) dq.pollLast(); // 如果栈底超过窗口范围,弹出栈底
while (!dq.isEmpty() && num[i] > num[dq.peek()]) { // 递增栈
dq.pop();
}
dq.push(i);
if (i >= size-1) res.add(num[dq.peekLast()]); // 栈底是最大值
}
return res;
}

表达式求值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public int solve (String s) {
char[] cs = s.toCharArray();
int n = cs.length, res = 0, num = 0;
Deque<Integer> st = new LinkedList<>(); // 用一个栈保存所有需要相加的元素
char op = '+'; // 记录上一个运算符号
for (int i = 0; i < n; i++) {
if (Character.isDigit(cs[i])) { // 计算当前数字
num = num * 10 + (cs[i]-48);
} else if(cs[i] == '(') { // 遇到左括号,需要递归计算子表达式的结果
int cnt = 1, j = i+1;
while (j < n) {
if (cs[j] == '(') cnt++;
else if (cs[j] == ')') cnt--;
if (cnt == 0) break;
j++;
}
num = solve(s.substring(i+1, j));
i = j;
}
if (i == n-1 || cs[i] == '+' || cs[i] == '-' || cs[i] == '*') { // 遇到结尾或者运算符号,说明当前值计算完毕可以放入栈中,并通过上一个运算符号判断需要存入栈的值
if (op == '+') st.push(num);
else if (op == '-') st.push(-num);
else if (op == '*') st.push(st.pop() * num);
op = cs[i];
num = 0;
}
}
while (!st.isEmpty()) res += st.pop(); // 栈中所有值的和就是答案
return res;
}

最小的k个数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public ArrayList<Integer> GetLeastNumbers_Solution (int[] input, int k) {  // 堆O(nlogk),还可以用快排O(n)
// write code here
int n = input.length;
ArrayList<Integer> res = new ArrayList<>();
PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> b - a); // 维护大小为k的最大堆优先队列,保存当前的最小k个数
for (int i = 0; i < k; i++) {
pq.offer(input[i]);
}
for (int i = k; i < n; i++) {
if (!pq.isEmpty() && input[i] < pq.peek()) { // 和堆顶最大值相比较,小于则放入
pq.poll();
pq.offer(input[i]);
}
}
for (int x : pq) { // 这样遍历不保证大小顺序(要顺序请用poll)
res.add(x);
}
return res;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
public ArrayList<Integer> GetLeastNumbers_Solution (int[] input, int k) {  // 手写最大堆
int n = input.length;
ArrayList<Integer> res = new ArrayList<>();
if (k == 0) return res;
int[] heap = new int[k+1];
for (int i = 0; i < k; i++) {
heap[i+1] = input[i];
}
buildHeap(heap, k);
for (int i = k; i < n; i++) {
if (input[i] < heap[1]) {
heap[1] = input[i];
heapify(heap, 1, k);
}
}
for (int i = 0; i < k; i++) { // 这样遍历不保证大小顺序(要顺序请用poll)
res.add(heap[i+1]);
}
return res;
}
private void buildHeap(int[] heap, int size) {
for (int i = size/2; i > 0; i--) {
heapify(heap, i, size);
}
}
private void heapify(int[] heap, int i, int size) {
int largest = i;
int left = i*2, right = i*2 + 1;
if (left <= size && heap[left] > heap[largest]) {
largest = left;
}
if (right <= size && heap[right] > heap[largest]) {
largest = right;
}
if (largest != i) {
swap(heap, largest, i);
heapify(heap, largest, size);
}
}
private void swap(int[] nums, int i, int j) {
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}

寻找第k大的数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public int findKth (int[] a, int n, int K) {
// return quickSort(a, 0, n-1, K-1); // 寻找第k小的数
return quickSort(a, 0, n-1, n-K);
}
private void swap(int nums[], int i, int j) {
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
private int partition(int nums[], int l, int r) {
int pivot = nums[l];
int i = l, j = r;
while (i < j) {
while (i < j && nums[j] >= pivot) j--;
while (i < j && nums[i] <= pivot) i++;
swap(nums, i, j);
if (i == j) swap(nums, l, j);
}
return j;
}
private int quickSort(int nums[], int l, int r, int K) {
int p = partition(nums, l, r);
if (K < p) return quickSort(nums, l, p-1, K);
else if (K > p) return quickSort(nums, p+1, r, K);
else return nums[p];
}

数据流的中位数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
PriorityQueue<Integer> up = new PriorityQueue<>();  // 最小堆,存储数值较大的上半部分,奇数时个数更多
PriorityQueue<Integer> down = new PriorityQueue<>((a, b) -> b - a); // 最大堆,存储下半部分
public void Insert(Integer num) {
up.offer(num);
down.offer(up.poll());
if (down.size() > up.size()) { // 平衡两个堆,下半部分更多时弹出给上半部分
up.offer(down.poll());
}
}

public Double GetMedian() {
if (up.size() > down.size()) { // 奇数情况
return (double)up.peek();
}
else {
return (double)(up.peek() + down.peek()) / 2;
}
}

哈希

数组中出现次数超过一半的数字

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public int MoreThanHalfNum_Solution (int[] numbers) {  // 候选数字 O(n)
int candidate = -1, cnt = 0;
for (int x : numbers) {
if (cnt == 0) {
candidate = x;
cnt++;
}
else {
if (x != candidate) cnt--;
else cnt++;
}
}
cnt = 0;
for (int x : numbers) {
if (x == candidate) cnt++;
}
return cnt > numbers.length/2 ? candidate : -1;
}

数组中只出现一次的两个数字

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public int[] FindNumsAppearOnce (int[] nums) {
int xor = 0;
for (int x : nums) {
xor ^= x;
}
int lowbit = xor & (-xor);
int[] res = new int[2];
for (int x : nums) {
if ((x & lowbit) == 0) res[0] ^= x;
else res[1] ^= x;
}
Arrays.sort(res);
return res;
}

缺失的第一个正整数

1
2
3
4
5
6
7
8
9
10
11
12
13
public int minNumberDisappeared (int[] nums) {  // 原地哈希
int n = nums.length;
for (int i = 0; i < n; i++) { // 小于等于0的非正整数,给它赋值n+1,不进行下一步for循环的逻辑
if (nums[i] <= 0) nums[i] = n+1;
}
for (int x : nums) { // 每个元素x,给它映射到数组上对应的位置,并赋予负值
if (Math.abs(x) <= n) nums[Math.abs(x)-1] = -Math.abs(nums[Math.abs(x)-1]);
}
for (int i = 0; i < n; i++) { // 最后判断,找到第一个非负值的元素,说明缺失了
if (nums[i] > 0) return i+1;
}
return n+1;
}

dfs

没有重复项数字的全排列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// [1,2,3] 题目要求字典排序,但这里最后两个排列[3,2,1],[3,1,2]也能通过
// 预期输出 [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
// 实际输出 [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,2,1],[3,1,2]]
public ArrayList<ArrayList<Integer>> permute (int[] num) { // 这种方法返回的结果不是字典序
Arrays.sort(num);
dfs(num, 0);
return res;
}
ArrayList<ArrayList<Integer>> res = new ArrayList<>();
public void dfs(int[] num, int idx) { // 数组两两元素交换
int n = num.length;
if (idx == n-1) { // 递归到最后一个元素,添加到结果中
ArrayList<Integer> t = new ArrayList<>();
for (int x : num) t.add(x);
res.add(t);
}
for (int i = idx; i < n; i++) { // 遍历交换元素
swap(num, i, idx);
dfs(num, idx + 1);
swap(num, i, idx);
}
}
public void swap(int[] num, int i, int j ) {
int t = num[i];
num[i] = num[j];
num[j] = t;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public ArrayList<ArrayList<Integer>> permute (int[] num) {  // 可以保证结果字典序
int n = num.length;
Arrays.sort(num);
List<Integer> list = Arrays.asList(new Integer[n]);
int[] vis = new int[n];
dfs(0, num, list, vis);
return res;
}
ArrayList<ArrayList<Integer>> res = new ArrayList<>();
public void dfs(int cnt, int[] num, List<Integer> list, int[] vis) { // 通过list赋值和记录是否出现进行dfs
int n = num.length;
if (cnt == n) { // 递归到最后一个元素,添加到结果中
res.add(new ArrayList<>(list));
return;
}
for (int i = 0; i < n; i++) { // 遍历交换元素
if (vis[i] == 1) continue;
list.set(cnt, num[i]);
vis[i] = 1;
dfs(cnt + 1, num, list, vis);
vis[i] = 0;
}
}

有重复项数字的全排列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public ArrayList<ArrayList<Integer>> permuteUnique (int[] num) {
int n = num.length;
Arrays.sort(num);
List<Integer> list = Arrays.asList(new Integer[n]);
int[] vis = new int[n];
dfs(0, num, list, vis);
return res;
}
ArrayList<ArrayList<Integer>> res = new ArrayList<>();
public void dfs(int cnt, int[] num, List<Integer> list, int[] vis) {
int n = num.length;
if (cnt == n) { // 递归到最后一个元素,添加到结果中
res.add(new ArrayList<>(list));
return;
}
for (int i = 0; i < n; i++) { // 依次加入list中
if (vis[i] == 1) continue; // 已放入list
// 在一次遍历中,对于连续的几个重复数字,我们只考虑将第一个数字进行后续dfs
if (i > 0 && num[i] == num[i-1] && vis[i-1] == 0) continue; // 和之前重复,跳过
list.set(cnt, num[i]);
vis[i] = 1;
dfs(cnt + 1, num, list, vis);
vis[i] = 0;
}
}

岛屿数量

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
int res = 0;
public int solve (char[][] grid) {
int m = grid.length, n = grid[0].length;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == '1') {
dfs(i, j, grid);
res++;
}
}
}
return res;
}
private void dfs(int x, int y, char grid[][]) {
int dirs[] = new int[]{1, 0, -1, 0, 1};
grid[x][y] = '0';
int m = grid.length, n = grid[0].length;
for (int i = 0; i < 4; i++) {
int nx = x + dirs[i], ny = y + dirs[i+1];
if (nx < 0 || nx >= m || ny < 0 || ny >= n) continue;
if (grid[nx][ny] == '0') continue;
dfs(nx, ny, grid);
}
}

字符串的排列

括号生成

1
2
3
4
5
6
7
8
9
10
11
12
13
ArrayList<String> res = new ArrayList<>();
public ArrayList<String> generateParenthesis (int n) {
dfs(n, n, "");
return res;
}
public void dfs(int left, int right, String s) { // left和right分别表示左右括号剩余数量,s是当前构造的字符串
if (left == 0 && right == 0) {
res.add(s);
return;
}
if (left > 0) dfs(left-1, right, s+"(");
if (right > 0 && right > left) dfs(left, right-1, s+")");
}

矩阵最长递增路径

dp

斐波那契数列

1
2
3
4
5
public int Fibonacci (int n) {  // 递归写法
// write code here
if (n <= 2) return 1;
return Fibonacci(n-1) + Fibonacci(n-2);
}
1
2
3
4
5
6
7
8
9
public int Fibonacci (int n) {  // 动态规划迭代写法
// write code here
int[] f = new int[n+1];
f[1] = 1;
for (int i = 2; i <= n; i++) {
f[i] = f[i-1] + f[i-2];
}
return f[n];
}

跳台阶

1
2
3
4
5
public int jumpFloor (int number) {  // 递归,没记忆化可能超时
if (number < 0) return 0;
if (number == 0) return 1;
return jumpFloor(number-1) + jumpFloor(number-2);
}
1
2
3
4
5
6
7
8
public int jumpFloor (int number) {
int[] f = new int[number+2];
f[1] = 1;
for (int i = 0; i < number; i++) {
f[i+2] = f[i+1] + f[i];
}
return f[number+1];
}

最小花费爬楼梯

1
2
3
4
5
6
7
8
9
10
11
12
public int minCostClimbingStairs (int[] cost) {
int n = cost.length;
// f[i]: 到第i个台阶的最低花费,从0开始,到达顶部是第n个台阶
int[] f = new int[n+1];
for (int i = 0; i <= n; i++) {
int pre = i-1 >= 0 ? f[i-1] : 0; // 到达前一个台阶的最小花费
int prepre = i-2 >= 0 ? f[i-2] : 0; // 到达前两个台阶的最小花费
f[i] = i < n ? cost[i] : 0; // 第n个台阶是最顶部,不需要花费
f[i] += Math.min(pre, prepre); // 从前一个或者前两个台阶转移过来
}
return f[n];
}

最长公共子序列(二)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public String LCS (String s1, String s2) {
char[] cs1 = s1.toCharArray(), cs2 = s2.toCharArray();
int n1 = cs1.length, n2 = cs2.length;
// f[i][j]: cs1[:i-1]和cs2[:j-1]的最长公共子序列长度
int[][] f = new int[n1+1][n2+1];
for (int i = 0; i < n1; i++) {
for (int j= 0; j < n2; j++) {
f[i+1][j+1] = Math.max(f[i][j+1], f[i+1][j]);
if (cs1[i] == cs2[j]) {
f[i+1][j+1] = f[i][j] + 1;
}
}
}
StringBuilder res = new StringBuilder();
for (int i = n1-1, j = n2-1; f[i+1][j+1]!=0;) { // dp回溯找方案
if (f[i+1][j+1] > f[i][j] && cs1[i] == cs2[j]) { // 如果先判断和左上角元素关系,那么还需要判断字符是否相等。因为只靠大于不能保证从这里转移过来,有可能从左边或者上边传过来的值也大于左上
res.append(cs1[i]);
i--; j--;
} else {
if (f[i+1][j+1] == f[i][j+1]) i--;
else j--;
}
// 或者这样写,直接优先判断与左边和上边的关系,如果不是从左边和上边转移过来的,那么一定是从左上转移过来
// if(f[i+1][j+1] == f[i][j+1]) i--;
// else if(f[i+1][j+1] == f[i+1][j]) j--;
// else if(f[i+1][j+1] > f[i][j]){
// res.append(cs1[i]);
// i--; j--;
// }
}
if (res.length() == 0) return "-1";
return res.reverse().toString();
}

最长公共子串

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public String LCS (String str1, String str2) {
char[] cs1 = str1.toCharArray(), cs2 = str2.toCharArray();
int n1 = cs1.length, n2 = cs2.length;
// f[i][j]: cs1[:i-1]和cs2[:j-1]的最长公共子串长度
int[][] f = new int[n1+1][n2+1];
int maxI = 0, maxJ = 0; // 最长子串长度的索引
for (int i = 0; i < n1; i++) {
for (int j= 0; j < n2; j++) {
if (cs1[i] == cs2[j]) { // 相等则+1
f[i+1][j+1] = f[i][j] + 1;
}
if (f[i+1][j+1] > f[maxI][maxJ]) { // 是否更新最长子串索引
maxI = i+1;
maxJ = j+1;
}
}
}
int len = f[maxI][maxJ];
return str1.substring(maxI-len, maxI); // 根据最长子串索引和长度,得到子串
}

不同路径的数目(一)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public int uniquePaths (int m, int n) {  // 动态规划
// f[i][j]: 到达matrix[i][j]位置的路径数目
int[][] f = new int[m][n];
f[0][0] = 1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == 0 && j == 0) continue;
int up = i-1 < 0 ? 0 : f[i-1][j];
int left = j-1 < 0 ? 0 : f[i][j-1];
f[i][j] = up + left;
}
}
return f[m-1][n-1];
}
1
2
3
4
5
6
7
8
9
10
11
public int uniquePaths (int m, int n) {  // 动态规划,冗余一行写法
// f[i][j]: 到达matrix[i-1][j-1]位置的路径数目
int[][] f = new int[m+1][n+1];
f[0][1] = 1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
f[i+1][j+1] = f[i][j+1] + f[i+1][j];
}
}
return f[m][n];
}
1
2
3
4
5
6
7
8
9
public int uniquePaths (int m, int n) {  // 组合数
// 向右n-1步,向下m-1步
// C(n-1, m+n-2) = (m+n-2)! / ((n-1)!*(m-1)!) = (m+n-2)*...*(m) / (n-1)!
long res = 1;
for (int i = m, j = 1; j <= n-1; i++, j++) {
res = res * i / j;
}
return (int)res;
}

矩阵的最小路径和

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public int minPathSum (int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
// f[i][j]: 到达matrix[i][j]位置的最小路径和
int[][] f = new int[m][n];
f[0][0] = matrix[0][0];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == 0 && j == 0) continue;
int up = i-1 < 0 ? (int)1e9 : f[i-1][j];
int left = j-1 < 0 ? (int)1e9 : f[i][j-1];
f[i][j] = matrix[i][j] + Math.min(up, left);
}
}
return f[m-1][n-1];
}

把数字翻译成字符串

有一种将字母编码成数字的方式:‘a’->1, ‘b->2’, … , ‘z->26’。现在给一串数字,返回有多少种可能的译码结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public int solve (String nums) {
char[] cs = nums.toCharArray();
int n = cs.length;
// f[i+1]: nums[:i]的译码方案数
int[] f = new int[n+1];
f[0] = 1;
for (int i = 0; i < n; i++) {
if (cs[i] != '0') f[i+1] += f[i]; // 当前字符不为0,则可以作为一个编码
if (i-1 >= 0) { // 考虑前两位
int num = (cs[i-1]-48)*10 + (cs[i]-48); // 计算前两位组成的数字
if (num == 0) return 0; // 如果两位都是0,则无法编码,返回0
if (10 <= num && num <= 26) f[i+1] += f[i-1]; // 如果数字在10和26之间,则这两位数字也可以作为一个编码
}
}
return f[n];
}

兑换零钱(一)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public int minMoney (int[] arr, int aim) {  // 完全背包
int n = arr.length;
// f[i]: 兑换零钱值为i的最少货币数量
int[] f = new int[aim+1];
Arrays.fill(f, (int)1e9);
f[0] = 0;
for (int i = 0; i < n; i++) { // 遍历所有货币面值
for (int j = 0; j <= aim; j++) { // 遍历所有aim取值
int pre = j-arr[i] >= 0 ? f[j-arr[i]] : (int)1e9;
f[j] = Math.min(f[j], pre+1);
}
}
return f[aim] == (int)1e9 ? -1 : f[aim];
}

最长上升子序列(一)(递增)

1
2
3
4
5
6
7
8
9
10
11
12
13
public int LIS (int[] arr) {  // 动态规划 O(n^2)
int n = arr.length;
// f[i]: arr[:i]的最长递增子序列
if (n == 0) return 0;
int[] f = new int[n];
Arrays.fill(f, 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
if (arr[i] > arr[j]) f[i] = Math.max(f[i], f[j]+1);
}
}
return Arrays.stream(f).max().getAsInt();
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public int LIS (int[] arr) {  // 贪心 + 二分 O(nlogn)
int n = arr.length;
// cnt[i]: 长度为i+1的最长上升子序列的最后一个元素
int[] map = new int[n];
int cnt = 0;
for (int x : arr) {
int l = 0, r = cnt;
while (l < r) {
int mid = l + (r-l)/2;
if (map[mid] >= x) r = mid;
else l = mid + 1;
}
map[l] = x;
if (l == cnt) cnt++;
// System.out.println(Arrays.toString(map) + " " + cnt);
}
return cnt;
}

最长回文子串

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public int getLongestPalindrome (String A) {  // 遍历中间位置
char[] cs = A.toCharArray();
int n = cs.length, res = 0;
for (int i = 0; i < n; i++) {
int l = i-1, r = i+1, cur = 1;
while (l >= 0 && r <= n-1) { // 奇数情况,往两边扩散
if (cs[l--] == cs[r++]) cur += 2;
else break;
}
res = Math.max(res, cur);
l = i; r = i+1; cur = 0;
while (l >= 0 && r <= n-1) { // 偶数情况,往两边扩散
if (cs[l--] == cs[r++]) cur += 2;
else break;
}
res = Math.max(res, cur);
}
return res;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public int getLongestPalindrome (String A) {  // 动态规划
char[] cs = A.toCharArray();
int n = cs.length, res = 0;
int[][] f = new int[n][n];
for (int i = n-1; i >= 0; i--) { // 从中间往外遍历,保证f[i+1][j-1]已经计算
for (int j = i; j < n; j++) {
if (cs[i] == cs[j]) {
if (i+1 >= j-1) f[i][j] = j - i + 1;
else if (f[i+1][j-1] != 0) f[i][j] = f[i+1][j-1] + 2;
res = Math.max(res, f[i][j]);
}
}
}
return res;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public int getLongestPalindrome (String A) {  // manacher
char[] cs = A.toCharArray();
int n = cs.length, res = 0;
char[] t = new char[n*2+3]; // 改造原始字符串
t[0] = '@'; t[n*2+2] = '$';
for (int i = 0; i < n; i++) {
t[i*2 + 1] = '#';
t[i*2 + 2] = cs[i];
}
t[n*2+1] = '#';
int[] p = new int[n*2+3]; // 每个位置的回文半径,映射后的回文半径恰好就是原始字符串的回文长度
int center = 0, right = 0; // right最右的窗口
for (int i = 1; i < t.length-1; i++) {
int mirror = center - (i - center);
if (right > i) { // 根据对称性,计算p[i]的初始值
p[i] = Math.min(p[mirror], right-i);
}
while (t[i + p[i] + 1] == t[i - p[i] - 1]) { // 暴力拓展
p[i]++;
}
if (i + p[i] > right) { // 更新最右窗口
right = i + p[i];
center = i;
}
}
return Arrays.stream(p).max().getAsInt();
}

数字字符串转化成IP地址

现在有一个只包含数字的字符串,将该字符串转化成IP地址的形式,返回所有可能的情况。

例如:给出的字符串为"25525522135", 返回[“255.255.22.135”, “255.255.221.35”]. (顺序没有关系)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public ArrayList<String> restoreIpAddresses (String s) {
dfs(s, 0, 0, "");
return res;
}
ArrayList<String> res = new ArrayList<>();
// 字符串s,当前的起始位置start,分割次数cnt,形成的目标字符串tg
public void dfs(String s, int start, int cnt, String tg) { // 递归,由于还要具体的字符串结果,所以这里用dfs比较好(用迭代dp比较适合计算个数)
char[] cs = s.toCharArray();
int n = cs.length, cur = 0;
if (start >= n) return; // 超出边界
if (cnt == 3) { // 最后一段数字
int num = Integer.valueOf(s.substring(start));
if (num != 0 && cs[start] == '0') return; // 有前导0,不添加到res
if (num <= 255) { // 小于255则添加到res
res.add(tg + num);
}
return;
}
for (int i = start; i < n; i++) { // 遍历分割位置
cur = cur*10 + cs[i] - 48;
if (cur > 255) break;
dfs(s, i+1, cnt+1, tg + cur + "."); // 寻找下一个分割位置
if (cur == 0) break; // 说明有前导0,则不进行下一次遍历
}
}

编辑距离(一)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public int editDistance (String str1, String str2) {
// write code here
int m = str1.length(), n = str2.length();
int f[][] = new int[m+1][n+1];
for (int i = 0; i <= m; i++) f[i][0] = (int)1e9;
for (int i = 0; i <= n; i++) f[0][i] = (int)1e9;
f[0][0] = 0;
for (int i = 0; i < m; i++) {
char c1 = str1.charAt(i);
for (int j = 0; j < n; j++) {
char c2 = str2.charAt(j);
int add = c1 == c2 ? 0 : 1;
f[i+1][j+1] = Math.min(f[i][j] + add, Math.min(f[i+1][j] + 1, f[i][j+1] + 1));
}
}
return f[m][n];
}

打家劫舍(一)(不相邻即可)

1
2
3
4
5
6
7
8
9
public int rob (int[] nums) {
int n = nums.length;
// f[i]:到nums[i-1]的价值最大值
int[] f = new int[n+2];
for (int i = 0; i < n; i++) {
f[i+2] = Math.max(f[i+1], f[i] + nums[i]);
}
return f[n+1];
}

打家劫舍(二)(环形)

1
2
3
4
5
6
7
8
9
10
11
12
13
public int rob (int[] nums) {
int n = nums.length;
return Math.max(rob(nums, 0, n-2), rob(nums, 1, n-1));
}
public int rob (int[] nums, int l, int r) {
int n = r - l + 1;
// f[i]:到nums[i-1]的价值最大值
int[] f = new int[n+2];
for (int i = 0; i < n; i++) {
f[i+2] = Math.max(f[i+1], f[i] + nums[l+i]);
}
return f[n+1];
}

字符串

字符串变形

这个字符串中由空格隔开的单词反序,同时反转每个字符的大小写。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public String trans (String s, int n) {
char[] cs = s.toCharArray();
StringBuilder res = new StringBuilder(), cur = new StringBuilder();
for (int i = n-1; i >= 0; i--) {
char c = Character.isLowerCase(cs[i]) ? Character.toUpperCase(cs[i]) : Character.toLowerCase(cs[i]); // 切换大小写
if (c == ' ') { // 空字符,则添加当前单词到res,并重置
res.append(cur);
cur = new StringBuilder();
res.append(' ');
} else { // 更新当前单词
cur.insert(0, c);
}
}
res.append(cur); // 加上最后一个单词
return res.toString();
}

最长公共前缀

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public String longestCommonPrefix (String[] strs) {
int n = strs.length;
if (n == 0) return "";
StringBuilder res = new StringBuilder();
for (int i = 0; i < strs[0].length(); i++) { // 直接遍历第一个字符串,要求公共,所以只可能出现任意一个字符串以内
char c = strs[0].charAt(i);
for (String word : strs) {
if (i >= word.length() || word.charAt(i) != c) { // 不匹配直接返回
return res.toString();
}
}
res.append(c);
}
return res.toString();
}
1
2
3
4
5
6
7
8
9
10
11
12
13
public String longestCommonPrefix (String[] strs) {  // 不用额外空间的写法
int n = strs.length;
if (n == 0) return "";
for (int i = 0; i < strs[0].length(); i++) {
char c = strs[0].charAt(i);
for (String word : strs) {
if (i >= word.length() || word.charAt(i) != c) { // 不匹配直接截取返回
return strs[0].substring(0, i);
}
}
}
return strs[0]; // 第一个字符串就是公共字符串
}

验证IP地址

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public String solve (String IP) {
if (IP.contains(":") && isIPv6(IP)) return "IPv6";
else if (IP.contains(".") && isIPv4(IP)) return "IPv4";
return "Neither";
}
public boolean isIPv4(String s) { // 验证IPv4
if (s.length() == 0 || s.charAt(0) == '.' || s.charAt(s.length()-1) == '.') return false; // 检查空串和首尾
String[] words = s.split("\\.");
for (String word : words) {
int cur = 0;
for (char c : word.toCharArray()) {
if (!Character.isDigit(c)) return false; // 非数字
if (c == 48 && cur == 0) return false; // 前导0
cur = cur * 10 + (c-48);
}
if (cur > 255) return false; // 大于255
}
return true;
}
public boolean isIPv6(String s) { // 验证IPv6
if (s.length() == 0 || s.charAt(0) == ':' || s.charAt(s.length()-1) == ':') return false; // 检查空串和首尾
String[] words = s.split("\\:");
for (String word : words) {
if (word.length() == 0 || word.length() > 4) return false; // 检查长度
for (char c : word.toCharArray()) {
if (!Character.isDigit(c) && !(c >= 'a' && c <= 'f') && !(c >= 'A' && c <= 'F')) return false; // 检查字符
}
}
return true;
}

大数加法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public String solve (String s, String t) {  // 倒序模拟两个数字相加
int m = s.length(), n = t.length();
int idx1 = m-1, idx2 = n-1, add = 0;
StringBuilder res = new StringBuilder();
while (idx1 >= 0 || idx2 >= 0 || add > 0) {
int add1 = idx1 >= 0 ? s.charAt(idx1--)-48 : 0;
int add2 = idx2 >= 0 ? t.charAt(idx2--)-48 : 0;
int value = add1 + add2 + add;
if (value >= 10) {
value -= 10;
add = 1;
}
else add = 0;
res.append((char)(value+48));
}
return res.reverse().toString();
}

双指针

判断是否为回文字符串

1
2
3
4
5
6
7
8
9
public boolean judge (String str) {
char[] cs = str.toCharArray();
int n = cs.length;
int l = 0, r = n-1;
while (l < r) {
if (cs[l++] != cs[r--]) return false;
}
return true;
}

合并区间

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public ArrayList<Interval> merge (ArrayList<Interval> intervals) {  // 按序合并
intervals.sort((a, b) -> a.start - b.start); // 根据start排序
int n = intervals.size();
int l = 0, r = 0;
ArrayList<Interval> res = new ArrayList<>();
while (l < n) {
int end = intervals.get(l).end;
while (r < n && intervals.get(r).start <= end) { // 找到当前区间的范围(合并这一个区间)
end = Math.max(end, intervals.get(r).end);
r++;
}
res.add(new Interval(intervals.get(l).start, end));
l = r;
}
return res;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public ArrayList<Interval> merge (ArrayList<Interval> intervals) {  // 差分 + 扫描线
int MX = 2*(int)1e5;
int[] add = new int[MX], delete = new int[MX];
for (Interval in : intervals) { // 分别记录差分的增加和减少数组(不能用一个数组一起表示,这样无法处理这种start和end相等的区间)
add[in.start]++;
delete[in.end]--;
}
ArrayList<Interval> res = new ArrayList<>();
int sum = 0;
Interval cur = new Interval(-1, -1);
for (int i = 0; i < MX; i++) { // 遍历所有可能的值
sum += add[i];
if (sum > 0 && cur.start == -1) cur.start = i; // 存在区间,开始记录
sum += delete[i];
if (sum == 0 && cur.start != -1) cur.end = i; // 当前区间结束
if (cur.start != -1 && cur.end != -1) { // 合并完一个区间
res.add(cur);
cur = new Interval(-1, -1);
}
}
return res;
}

反转字符串

1
2
3
public String solve (String str) {
return new StringBuilder(str).reverse().toString();
}

最长无重复子数组

1
2
3
4
5
6
7
8
9
10
11
12
13
public int maxLength (int[] arr) {
int n = arr.length;
int l = 0, res = 0;
HashSet<Integer> set = new HashSet<>();
for (int r = 0; r < n; r++) { // 右端点
while (set.contains(arr[r])) {
set.remove(arr[l++]); // 左端点
}
set.add(arr[r]);
res = Math.max(res, r-l+1);
}
return res;
}

盛水最多的容器

贪心

主持人调度(二)

结构

LRU

使用LinkedList的写法,这样写法需要遍历list查找,而自己定义Node前后指针可以O(1)进行修改

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
public class Solution {
class Node {
int key, val;
}
int capacity;
HashMap<Integer, Node> map = new HashMap<>();
LinkedList<Node> list = new LinkedList<>();
public Solution(int capacity) {
this.capacity = capacity;
}
public int get(int key) {
Node cur = map.get(key);
if (cur == null) return -1;
list.remove(cur);
list.addFirst(cur);
return cur.val;
}
public void set(int key, int value) {
Node cur = map.get(key);
if (cur == null) {
cur = new Node();
cur.key = key;
cur.val = value;
map.put(key, cur);
if (map.size() > capacity) {
map.remove(list.getLast().key);
list.removeLast();
}
} else {
cur.val = value;
list.remove(cur);
}
list.addFirst(cur);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public class Solution {  // 也可以不用自定义Node结构了
int capacity;
HashMap<Integer, Integer> map = new HashMap<>();
LinkedList<Integer> list = new LinkedList<>();
public Solution(int capacity) {
this.capacity = capacity;
}
public int get(int key) {
Integer cur = map.get(key);
if (cur == null) return -1;
list.remove((Integer)key);
list.addFirst((Integer)key);
return cur;
}
public void set(int key, int value) {
Integer cur = map.get(key);
if (cur == null) {
map.put(key, value);
if (map.size() > capacity) {
map.remove(list.getLast());
list.removeLast();
}
} else {
map.put(key, value);
list.remove((Integer)key);
}
list.addFirst((Integer)key);
}
}

自己实现链表的写法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class Node {
int key, val;
Node pre, nxt;
}
int capacity;
Node head = new Node(), tail = new Node(); // 虚拟dummy头尾Node
HashMap<Integer, Node> map = new HashMap<>();
public Solution(int capacity) {
this.capacity = capacity;
head.nxt = tail;
tail.pre = head;
}
private void addFirst(Node cur) {
cur.pre = head;
cur.nxt = head.nxt;
head.nxt.pre = cur;
head.nxt = cur;
}
private void delete(Node cur) {
cur.pre.nxt = cur.nxt;
cur.nxt.pre = cur.pre;
}
public int get(int key) {
Node cur = map.get(key);
if (cur == null) return -1;
delete(cur);
addFirst(cur);
return cur.val;
}
public void set(int key, int value) {
Node cur = map.get(key);
if (cur == null) {
cur = new Node();
cur.key = key;
cur.val = value;
map.put(key, cur);
if (map.size() > capacity) {
map.remove(tail.pre.key);
delete(tail.pre);
}
}
else {
cur.val = value;
delete(cur);
}
addFirst(cur);
}

使用LinkedHashMap自带的LRU

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import java.util.LinkedHashMap;

public class Main{
public static int capacity = 3;
public static LinkedHashMap<Integer, Integer> map = new LinkedHashMap<>(capacity, 0.75f, true); // 这里需要设置访问顺序true
public static int get(int key) {
return map.getOrDefault(key, -1);
}
public static void put(int key, int val) {
map.put(key, val);
if (map.size() > capacity) {
Integer oldestKey = map.keySet().iterator().next(); // LinkedHashMap队首才是最久未使用
map.remove(oldestKey);
}
}
public static void main(String[] args) {
put(1, 1);
put(2, 2);
put(3, 3);
get(1);
put(4, 4);
System.out.println(get(1) + " " + get(2) + " " + get(3) + " " + get(4));
}
}

LFU

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
class Node {
int key, val, freq;
Node pre, nxt;
}
class NodeList {
Node head = new Node(), tail = new Node();
public NodeList() {
head.nxt = tail;
tail.pre = head;
}
private void addFrist(Node cur) {
cur.pre = head;
cur.nxt = head.nxt;
head.nxt.pre = cur;
head.nxt = cur;
}
private void delete(Node cur) {
cur.pre.nxt = cur.nxt;
cur.nxt.pre = cur.pre;
}
private void moveToHead(Node cur) {
delete(cur);
addFrist(cur);
}
}
int minFreq = 0, capacity;
HashMap<Integer, Node> map = new HashMap<>(); // 存储key和对应的Node
HashMap<Integer, NodeList> freqMap = new HashMap<>(); // 存储频率和对应Node组成的NodeList
public int get(int key) {
Node cur = map.get(key);
if (cur == null) return -1;
incrFreq(cur);
return cur.val;
}
public void set(int key, int val) {
Node cur = map.get(key);
if (cur == null) {
if (map.size() == capacity) {
NodeList list = freqMap.get(minFreq);
map.remove(list.tail.pre.key);
list.delete(list.tail.pre);
}
cur = new Node();
cur.key = key; cur.val = val; cur.freq = 1;
minFreq = 1;
map.put(key, cur);
addNode(cur);
}
else {
incrFreq(cur);
cur.val = val;
}
}
public void incrFreq(Node cur) {
NodeList list = freqMap.get(cur.freq);
list.delete(cur);
if (list.head.nxt == list.tail) {
if (cur.freq == minFreq) {
minFreq++;
}
}
cur.freq++;
addNode(cur);
}
public void addNode(Node cur) {
NodeList list = freqMap.getOrDefault(cur.freq, new NodeList());
list.addFrist(cur);
freqMap.put(cur.freq, list);
}
public int[] LFU (int[][] operators, int k) {
// 若opt=1,接下来两个整数x, y,表示set(x, y)
// 若opt=2,接下来一个整数x,表示get(x),若x未出现过或已被移除,则返回-1
capacity = k;
ArrayList<Integer> res = new ArrayList<>();
for (int operator[] : operators) {
if (operator[0] == 1) {
int key = operator[1], val = operator[2];
set(key, val);
}
else {
int key = operator[1];
res.add(get(key));
}
}
return res.stream().mapToInt(i -> i).toArray();
}

模拟

旋转数组(右移m位)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public int[] solve (int n, int m, int[] a) {
m %= n;
reverse(a, 0, n-1); // 反转整个数组
reverse(a, 0, m-1); // 反转数组前m个数
reverse(a, m, n-1); // 反转数组剩余的n-m个数
return a;
}
public void reverse(int a[], int left, int right) {
while (left < right) {
int t = a[left];
a[left] = a[right];
a[right] = t;
left++;
right--;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public int[] solve (int n, int m, int[] a) {
m = m % n; // 左移m位
int start = 0, cnt = 0;
while (cnt < n) {
int cur = start;
while (cnt < n) { // 迭代左移这个环
int nxt = (cur + n - m) % n;
// int nxt = (cur + m) % n; // 右移
cnt++;
if (nxt == start) break;
swap(a, cur, nxt);
cur = nxt;
}
start++; // 处理下一个环
}
return a;
}
private void swap(int a[], int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;
}

顺时针旋转矩阵

其它面试面到的

搜索二维矩阵 leetcode 74

每行中的整数从左到右按非严格递增顺序排列,每行的第一个整数大于前一行的最后一个整数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length, n = matrix[0].length;
int l = 0, r = m-1;
while (l < r) { // 找到第一列中,第一个小于等于target的值(行索引)
int mid = l + (r-l+1)/2;
if (matrix[mid][0] <= target) l = mid;
else r = mid - 1;
}
int x = l;
l = 0; r = n-1;
while (l < r) { // 在这个行中,二分查找target(大于等于和小于等于都可以)
int mid = l + (r-l)/2;
if (matrix[x][mid] >= target) r = mid;
else l = mid + 1;
}
int y = l;
System.out.println(matrix[x][y]);
return matrix[x][y] == target;
}
}

搜索二维矩阵 II leetcode 240

每行的元素从左到右升序排列,每列的元素从上到下升序排列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length, n = matrix[0].length;
int x = 0, y = n-1; // 从右上角出发
while (x <= m-1 && y >= 0) {
if (matrix[x][y] > target) { // 舍弃这一列
y--;
}
else if (matrix[x][y] < target) { // 舍弃这一行
x++;
}
else return true;
}
return false;
}
}

实现一个LRU过期算法的KV cache, 所有KV过期间隔相同, 满足如下性质:

  1. 最多存储n对KV;
  2. 如果大于n个, 则随意剔除一个已经过期的KV;
  3. 如果没有过期的KV, 则按照LRU的规则剔除一个KV;
  4. 查询时如果已经过期, 则返回空;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import java.util.*;

class Solution { // 使用LinkedList
class Node {
int key, val;
long expireTime;
}
int capacity;
long expireInterval;
HashMap<Integer, Node> map = new HashMap<>();
LinkedList<Node> list = new LinkedList<>();
Deque<Node> dq = new LinkedList<>();
public Solution(int capacity, long expireInterval) {
this.capacity = capacity;
this.expireInterval = expireInterval;
}
public int get(int key) {
Node cur = map.get(key);
if (cur == null) return -1;
list.remove(cur);
list.addFirst(cur);
return cur.val;
}
public void set(int key, int value) {
Node cur = map.get(key);
System.out.println(System.currentTimeMillis());
if (cur == null) {
cur = new Node();
cur.key = key;
cur.val = value;
cur.expireTime = System.currentTimeMillis() + expireInterval;
map.put(key, cur);
if (map.size() > capacity) {
System.out.println(dq.peek().expireTime + " " + System.currentTimeMillis());
Node removeNode = dq.peek().expireTime < System.currentTimeMillis() ? dq.peek() : list.getLast();
dq.remove(removeNode);
map.remove(removeNode.key);
list.remove(removeNode);
}
dq.offer(cur);
} else {
cur.val = value;
list.remove(cur);
}
list.addFirst(cur);
}
}

public class Main {
public static void main(String[] args) throws InterruptedException {
// Scanner input=new Scanner(System.in);
// String str=input.next();
System.out.println("hello world");
Solution solution = new Solution(3, 1);
solution.set(1, 1);
Thread.sleep(10);
solution.set(2, 2);
Thread.sleep(10);
solution.get(1);
solution.set(3, 3);
Thread.sleep(10);
solution.set(4, 4);
System.out.println(solution.get(1));
System.out.println(solution.get(2));
System.out.println(solution.get(3));
System.out.println(solution.get(4));
}
}

删除链表的倒数第 N 个结点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public ListNode removeNthFromEnd(ListNode head, int k) {
ListNode dummy = new ListNode(-1), pre = dummy;
dummy.next = head;
ListNode right = head;
for (int i = 0; i < k; i++) {
if (right == null) break;
right = right.next;
}
ListNode left = head;
while (right != null) {
pre = left;
left = left.next;
right = right.next;
}
pre.next = left.next;
return dummy.next;
}
}

其它

寻找两个正序数组的中位数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) { // O(n) 双指针
if (nums1.length > nums2.length) { // 让nums1表示长度更短的数组
int[] t = nums1;
nums1 = nums2;
nums2 = t;
}
int m = nums1.length, n = nums2.length;
int[] a = new int[m+2], b = new int[n+2]; // 前后加入哨兵
a[0] = b[0] = Integer.MIN_VALUE;
a[m+1] = b[n+1] = Integer.MAX_VALUE;
System.arraycopy(nums1, 0, a, 1, m);
System.arraycopy(nums2, 0, b, 1, n);
// 假设两个数组合起来排序后,分为前后两组,分别用第一组和第二组表示,并且我们规定奇数情况下,第一组比第二组数量多1
int i = 0, j = (m + n + 1)/2; // 表示a数组的前i个数在第一组,b数组的前j个数在第一组
while (true) {
int curMax = Math.max(a[i], b[j]); // 第一组的最大值
int nxtMin = Math.min(a[i+1], b[j+1]); // 第二组的最小值
if (curMax <= nxtMin) {
// if (a[i] <= b[j+1] && b[j] <= a[i+1]) { // 由于a和b数组有序,可以简化判断,同时这样就可以用二分了
return (m+n)%2 == 0 ? ((double)curMax + (double)nxtMin)/2 : (double)curMax;
}
i++;
j--;
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) { // O(logn) 双指针 + 二分
if (nums1.length > nums2.length) { // 让nums1表示长度更短的数组
int[] t = nums1;
nums1 = nums2;
nums2 = t;
}
int m = nums1.length, n = nums2.length;
int[] a = new int[m+2], b = new int[n+2]; // 前后加入哨兵
a[0] = b[0] = Integer.MIN_VALUE;
a[m+1] = b[n+1] = Integer.MAX_VALUE;
System.arraycopy(nums1, 0, a, 1, m);
System.arraycopy(nums2, 0, b, 1, n);
// 假设两个数组合起来排序后,分为前后两组,分别用第一组和第二组表示,并且我们规定奇数情况下,第一组比第二组数量多1
int l = 0, r = m;
while (l < r) { // 二分位置i
int mid = l + (r-l+1)/2;
int i = mid, j = (m+n+1)/2 - i; // 表示a数组的前i个数在第一组,b数组的前j个数在第一组
if (a[i] <= b[j+1]) l = mid;
else r = mid - 1;
}
int i = l, j = (m+n+1)/2 - i;
int curMax = Math.max(a[i], b[j]); // 第一组的最大值
int nxtMin = Math.min(a[i+1], b[j+1]); // 第二组的最小值
return (m+n)%2 == 0 ? ((double)curMax + (double)nxtMin)/2 : (double)curMax;
}
}

N 皇后

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class Solution {
public List<List<String>> solveNQueens(int n) {
int[][] grid = new int[n][n]; // 棋盘
dfs(grid, 0);
return res;
}
List<List<String>> res = new ArrayList<>();
public void dfs(int[][] grid, int i) { // 排列型回溯
int n = grid.length;
if (i == n) { // 所有行遍历结束,结果添加到res
res.add(toString(grid));
return;
}
for (int j = 0; j < n; j++) { // 遍历第i行的每一个元素grid[i][j]
if (check(grid, i, j)) { // 当前位置可以放入皇后
grid[i][j] = 1;
dfs(grid, i+1); // dfs下一行
grid[i][j] = 0;
}
}
}
public boolean check(int[][] grid, int x, int y) { // O(n),通过当前位置的8个方向是否存在皇后进行判断
int n = grid.length;
int[][] dirs = new int[][]{{1,0},{-1,0},{0,1},{0,-1},{1,1},{1,-1},{-1,1},{-1,-1}};
for (int[] dir : dirs) {
for (int i = 1; i < n; i++) {
int nx = x + dir[0]*i, ny = y + dir[1]*i;
if (nx < 0 || ny < 0 || nx >= n || ny >= n) break;
if (grid[nx][ny] == 1) return false;
}
}
return true;
}
public List<String> toString(int[][] grid) { // 棋盘数组转换为String
List<String> res = new ArrayList<>();
for (int[] row : grid) {
String cur = "";
for (int x : row) cur += x == 1 ? "Q" : ".";
res.add(cur);
}
return res;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class Solution {
public List<List<String>> solveNQueens(int n) {
int[][] grid = new int[n][n];
// 用这三个数组判断是否冲突,O(1)判断
// cols[j]表示第j列是否存在皇后,diag1[idx]表示第idx对角线是否存在皇后,diag2表示另一条对角线
int[] cols = new int[n], diag1 = new int[n*2], diag2 = new int[n*2];
dfs(grid, 0, cols, diag1, diag2);
return res;
}
List<List<String>> res = new ArrayList<>();
public void dfs(int[][] grid, int i, int[] cols, int[] diag1, int[] diag2) { // 排列型回溯
int n = grid.length;
if (i == n) { // 所有行遍历结束,结果添加到res
res.add(toString(grid));
return;
}
for (int j = 0; j < n; j++) { // 遍历第i行的每一个元素grid[i][j]
int diag1Idx = i + j, diag2Idx = i - j + n - 1;
if (cols[j] == 0 && diag1[diag1Idx] == 0 && diag2[diag2Idx] == 0) { // 当前位置可以放入皇后
grid[i][j] = 1;
cols[j] = 1; diag1[diag1Idx] = 1; diag2[diag2Idx] = 1;
dfs(grid, i+1, cols, diag1, diag2);
cols[j] = 0; diag1[diag1Idx] = 0; diag2[diag2Idx] = 0;
grid[i][j] = 0;
}
}
}
public List<String> toString(int[][] grid) { // 棋盘数组转换为String
List<String> res = new ArrayList<>();
for (int[] row : grid) {
String cur = "";
for (int x : row) cur += x == 1 ? "Q" : ".";
res.add(cur);
}
return res;
}
}

有序数组中的单一元素:每个元素都会出现两次,唯有一个数只会出现一次

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public int singleNonDuplicate(int[] nums) { // 二分
int n = nums.length;
int l = 0, r = n-1;
while (l < r) {
int mid = l + (r-l)/2;
if (mid % 2 == 0) { // 当前位置是偶数,则下一个位置是奇数,如果当前位置和下一个位置相等,则单一元素在右边,否则在左边
if (nums[mid] != nums[mid+1]) r = mid;
else l = mid + 1;
} else { // 当前位置是奇数,则上一个位置是偶数,如果当前位置和上一个位置相等,则单一元素在右边,否则在左边
if (nums[mid] != nums[mid-1]) r = mid;
else l = mid + 1;
}
}
return nums[l];
}
}

分割链表

给你一个链表的头节点 head 和一个特定值 x ,请你对链表进行分隔,使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public ListNode partition(ListNode head, int x) {
ListNode dummy1 = new ListNode(-1, head), pre1 = dummy1; // 小于x的链表哨兵节点和前驱节点
ListNode dummy2 = new ListNode(-1, head), pre2 = dummy2; // 大于等于x的链表哨兵节点和前驱节点
ListNode cur = head;
while (cur != null) {
if (cur.val < x) {
pre1.next = cur;
pre1 = cur;
} else {
pre2.next = cur;
pre2 = cur;
}
cur = cur.next;
}
pre2.next = null; // 将大于等于x的链表尾部置空,否则会出现环状链表,导致死循环
pre1.next = dummy2.next; // 连接两个链表
return dummy1.next;
}

132模式

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public boolean find132pattern(int[] nums) { // 遍历j解法,维护左边最小值和右边有序记录
int n = nums.length;
int leftMin = nums[0];
TreeMap<Integer, Integer> rightCnt = new TreeMap<>();
for (int k = 2; k < n; k++) { // 初始化右边有序记录
rightCnt.merge(nums[k], 1, (a, b) -> a+b);
}
for (int j = 1; j < n-1; j++) {
Integer right = rightCnt.higherKey(leftMin); // 获得右边大于左边最小值的最小元素
if (right != null && leftMin < nums[j] && nums[j] > right) return true; // 符合132序列
leftMin = Math.min(leftMin, nums[j]); // 维护左边最小值
rightCnt.merge(nums[j+1], 1, (a, b) -> a-b); // 维护右边有序记录(越来越少)
if (rightCnt.get(nums[j+1]) == 0) rightCnt.remove(nums[j+1]);
}
return false;
}
}

K 个一组翻转链表

给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。你不能只是单纯的改变节点内部的值,而是需要实际进行节点交换。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public ListNode reverseKGroup(ListNode head, int k) {
// 哨兵节点,前一组的尾节点,当前节点
ListNode dummy = new ListNode(-1, head), preTail = dummy, cur = head;
while (cur != null) {
ListNode t = cur; // 临时节点
for (int j = 0; j < k-1 && t != null; j++) { // 判断长度是否小于k,小于则跳出
t = t.next;
}
if (t == null) break;
ListNode nxtPreTail = cur, pre = null; // 下一个前一组的尾节点(也就是这一组的第一个节点),pre是前节点
for (int j = 0; j < k; j++) { // 翻转这一组
ListNode nxt = cur.next;
cur.next = pre;
pre = cur;
cur = nxt;
}
preTail.next = pre; // 前一组的尾节点next指针指向这一组的最后一个节点
nxtPreTail.next = cur; // 这一组的第一个节点next指针指向下一组的第一个节点
preTail = nxtPreTail; // 更新前一组的尾节点
}
return dummy.next;
}
}

大数

大数相减

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
public String substring (String num1, String num2) {
int sign = 0;
int compareRes = compare(num1, num2);
if (compareRes == 0) return "0";
if (compareRes < 0) { // num1 < num2,交换num1和num2,并将符号置为负数
String t = num1;
num1 = num2;
num2 = t;
sign = -1;
}
StringBuilder res = new StringBuilder();
int n1 = num1.length(), n2 = num2.length();
int idx1 = n1-1, idx2 = n2-1, carry = 0;
while (idx1 >= 0 || idx2 >= 0) { // 从低位到高位遍历,计算每一位的结果,并将结果添加到res中
int cur1 = idx1 >= 0 ? num1.charAt(idx1--)-48 : 0;
int cur2 = idx2 >= 0 ? num2.charAt(idx2--)-48 : 0;
int cur = cur1 - cur2 - carry;
if (cur < 0) { // 当前位不够减,需要向高位借1
cur += 10;
carry = 1;
} else {
carry = 0;
}
res.append((char)(cur+48));
}
int cnt = 0;
for (int idx = res.length()-1; idx >= 0 && res.charAt(idx) == '0'; idx--) { // 去除前导0,并计算前导0的个数cnt
cnt++;
}
return (sign == -1 ? "-" : "") + res.reverse().substring(cnt); // 将res反转,并去除前导0,最后加上符号返回结果
}
public int compare(String num1, String num2) {
int n1 = num1.length(), n2 = num2.length();
if (n1 != n2) return n1 > n2 ? 1 : -1;
for (int i = 0; i < n1; i++) {
if (num1.charAt(i) > num2.charAt(i)) return 1;
else if (num1.charAt(i) < num2.charAt(i)) return -1;
}
return 0;
}

大数乘法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
public String solve (String s, String t) {  // 倒序模拟两个数字相乘
int m = s.length(), n = t.length();
String res = "0";
for (int j = n-1; j >= 0; j--) { // 遍历字符串t
StringBuilder line = new StringBuilder();
int cur2 = t.charAt(j) - 48;
if (cur2 != 0) { // 如果当前位不为0,则按位倒序计算
int carry = 0;
for (int k = j+1; k < n; k++) line.append("0"); // 根据t的当前位置补0
for (int i = m-1; i >= 0; i--) { // 遍历字符串s,计算当前位的结果和进位
int cur1 = s.charAt(i) - 48;
int cur = cur1 * cur2 + carry;
carry = cur / 10;
cur = cur % 10;
line.append((char)(cur+48));
}
if (carry != 0) line.append((char)(carry+48)); // 如果最后还有进位,则补上去
} else { // 如果当前位是0,则结果直接为0
line.append("0");
}
res = add(res, line.reverse().toString()); // 将当前位的相乘结果加到最终结果中去
}
return res;
}
public String add (String s, String t) { // 倒序模拟两个数字相加
int m = s.length(), n = t.length();
int idx1 = m-1, idx2 = n-1, add = 0;
StringBuilder res = new StringBuilder();
while (idx1 >= 0 || idx2 >= 0 || add > 0) {
int add1 = idx1 >= 0 ? s.charAt(idx1--)-48 : 0;
int add2 = idx2 >= 0 ? t.charAt(idx2--)-48 : 0;
int value = add1 + add2 + add;
if (value >= 10) {
value -= 10;
add = 1;
}
else add = 0;
res.append((char)(value+48));
}
return res.reverse().toString();
}

LeetCode LCR

LCR 001. 两数相除

要求不得使用乘号 ‘*’、除号 ‘/’ 以及求余符号 ‘%’

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public int divide(int a, int b) {
if (a == Integer.MIN_VALUE && b == -1) return Integer.MAX_VALUE; // 特判溢出
int sign = (a ^ b) >= 0 ? 1 : -1; // 判断符号
long al = Math.abs((long)a), bl = Math.abs((long)b); // 转换为long类型防止溢出,取绝对值
int res = 0;
while (al >= bl) {
long cur = 1, sum = bl; // 倍增法,cur表示当前倍数,sum表示当前和
while (sum <= Integer.MAX_VALUE >> 1 && sum + sum <= al) {
sum += sum;
cur += cur;
}
al -= sum;
res += cur;
}
return sign * res;
}
}